Search results
Results from the WOW.Com Content Network
Heteroarenes are aromatic compounds, where at least one methine or vinylene (-C= or -CH=CH-) group is replaced by a heteroatom: oxygen, nitrogen, or sulfur. [3] Examples of non-benzene compounds with aromatic properties are furan, a heterocyclic compound with a five-membered ring that includes a single oxygen atom, and pyridine, a heterocyclic compound with a six-membered ring containing one ...
Many simple aromatic rings have trivial names. They are usually found as substructures of more complex molecules ("substituted aromatics"). Typical simple aromatic compounds are benzene, indole, and pyridine. [1] [2] Simple aromatic rings can be heterocyclic if they contain non-carbon ring atoms, for example, oxygen, nitrogen, or sulfur.
Benzene is a natural constituent of petroleum and is one of the elementary petrochemicals. Due to the cyclic continuous pi bonds between the carbon atoms, benzene is classed as an aromatic hydrocarbon. Benzene is a colorless and highly flammable liquid with a sweet smell, and is partially responsible for the aroma of gasoline.
Two different resonance forms of benzene (top) combine to produce an average structure (bottom). In organic chemistry, aromaticity is a chemical property describing the way in which a conjugated ring of unsaturated bonds, lone pairs, or empty orbitals exhibits a stabilization stronger than would be expected by the stabilization of conjugation alone.
Rather, the molecule exhibits bond lengths in between those of single and double bonds. This commonly seen model of aromatic rings, namely the idea that benzene was formed from a six-membered carbon ring with alternating single and double bonds (cyclohexatriene), was developed by August Kekulé (see History section below).
A heterocyclic compound or ring structure is a cyclic compound that has atoms of at least two different elements as members of its ring(s). [1] Heterocyclic organic chemistry is the branch of organic chemistry dealing with the synthesis, properties, and applications of organic heterocycles .
Kekulé structure of benzene with alternating double bonds. Kekulé's most famous work was on the structure of benzene. [3] In 1865 Kekulé published a paper in French (for he was then still in Belgium) suggesting that the structure contained a six-membered ring of carbon atoms with alternating single and double bonds. [11]
Hückel's rule can also be applied to molecules containing other atoms such as nitrogen or oxygen. For example pyridine (C 5 H 5 N) has a ring structure similar to benzene, except that one -CH- group is replaced by a nitrogen atom with no hydrogen. There are still six π electrons and the pyridine molecule is also aromatic and known for its ...