Search results
Results from the WOW.Com Content Network
A state diagram for a simple example is shown in the figure on the right, using a directed graph to picture the state transitions. The states represent whether a hypothetical stock market is exhibiting a bull market, bear market, or stagnant market trend during a given week. According to the figure, a bull week is followed by another bull week ...
A discrete-time Markov chain is a sequence of random variables X 1, X 2, X 3, ... with the Markov property, namely that the probability of moving to the next state depends only on the present state and not on the previous states:
A Markov decision process is a Markov chain in which state transitions depend on the current state and an action vector that is applied to the system. Typically, a Markov decision process is used to compute a policy of actions that will maximize some utility with respect to expected rewards.
A continuous-time Markov chain (CTMC) is a continuous stochastic process in which, for each state, the process will change state according to an exponential random variable and then move to a different state as specified by the probabilities of a stochastic matrix. An equivalent formulation describes the process as changing state according to ...
Example of a simple MDP with three states (green circles) and two actions (orange circles), with two rewards (orange arrows) A Markov decision process is a 4-tuple (,,,), where: is a set of states called the state space. The state space may be discrete or continuous, like the set of real numbers.
Consider this figure depicting a section of a Markov chain with states i, j, k and l and the corresponding transition probabilities. Here Kolmogorov's criterion implies that the product of probabilities when traversing through any closed loop must be equal, so the product around the loop i to j to l to k returning to i must be equal to the loop the other way round,
A terminating Markov chain is a Markov chain where all states are transient, except one which is absorbing. Reordering the states, the transition probability matrix of a terminating Markov chain with m {\displaystyle m} transient states is
An irreducible and aperiodic Markov chain necessarily has a stationary distribution, a probability distribution on its states that describes the probability of being on a given state after many steps, regardless of the initial choice of state. [1] The Markov chain tree theorem considers spanning trees for the states of the Markov chain, defined ...