Search results
Results from the WOW.Com Content Network
Interval scheduling is a class of problems in computer science, particularly in the area of algorithm design. The problems consider a set of tasks. Each task is represented by an interval describing the time in which it needs to be processed by some machine (or, equivalently, scheduled on some resource).
Schedule each job in this sequence into a machine in which the current load (= total processing-time of scheduled jobs) is smallest. Step 2 of the algorithm is essentially the list-scheduling (LS) algorithm. The difference is that LS loops over the jobs in an arbitrary order, while LPT pre-orders them by descending processing time.
interval order: Each job has an interval [s x,e x) and job is a predecessor of if and only if the end of the interval of is strictly less than the start of the interval for .= In the presence of a precedence relation one might in addition assume time lags. The time lag between two jobs is the amount of time that must be waited after the first ...
The activity selection problem is also known as the Interval scheduling maximization problem (ISMP), which is a special type of the more general Interval Scheduling problem. A classic application of this problem is in scheduling a room for multiple competing events, each having its own time requirements (start and end time), and many more arise ...
The firm's practice areas include business and finance, business restructuring, bankruptcy and creditor rights, domestic relations, employment, environmental, gaming, government contracts, health and life sciences, higher education, intellectual property, labor relations, litigation, pharmaceutical and life sciences litigation, private client ...
Vorys, Sater, Seymour and Pease LLP is an international law firm based in Columbus, Ohio.With approximately 375 attorneys working out of offices in California, Ohio, Pennsylvania, Texas, Washington, D.C., London, and Berlin, the firm is among the largest 150 law firms in the United States, according to American Lawyer.
To schedule a job , an algorithm has to choose a machine count and assign j to a starting time and to machines during the time interval [, +,). A usual assumption for this kind of problem is that the total workload of a job, which is defined as d ⋅ p j , d {\displaystyle d\cdot p_{j,d}} , is non-increasing for an increasing number of machines.
The open-shop scheduling problem can be solved in polynomial time for instances that have only two workstations or only two jobs. It may also be solved in polynomial time when all nonzero processing times are equal: in this case the problem becomes equivalent to edge coloring a bipartite graph that has the jobs and workstations as its vertices, and that has an edge for every job-workstation ...