Search results
Results from the WOW.Com Content Network
Visit the current node for pre-order traversal. For each i from 1 to the current node's number of subtrees − 1, or from the latter to the former for reverse traversal, do: Recursively traverse the current node's i-th subtree. Visit the current node for in-order traversal. Recursively traverse the current node's last subtree.
Level The level of a node is the number of edges along the unique path between it and the root node. [4] This is the same as depth. Width The number of nodes in a level. Breadth The number of leaves. Forest A set of one or more disjoint trees. Ordered tree A rooted tree in which an ordering is specified for the children of each vertex. Size of ...
Also called a level-order traversal. In a complete binary tree, a node's breadth-index ( i − (2 d − 1)) can be used as traversal instructions from the root. Reading bitwise from left to right, starting at bit d − 1, where d is the node's distance from the root ( d = ⌊log 2 ( i +1)⌋) and the node in question is not the root itself ( d ...
6-ary tree represented as a binary tree. Every multi-way or k-ary tree structure studied in computer science admits a representation as a binary tree, which goes by various names including child-sibling representation, [1] left-child, right-sibling binary tree, [2] doubly chained tree or filial-heir chain.
It is also possible to use depth-first search to linearly order the vertices of a graph or tree. There are four possible ways of doing this: A preordering is a list of the vertices in the order that they were first visited by the depth-first search algorithm. This is a compact and natural way of describing the progress of the search, as was ...
The k-d tree is a binary tree in which every node is a k-dimensional point. [2] Every non-leaf node can be thought of as implicitly generating a splitting hyperplane that divides the space into two parts, known as half-spaces.
Euler tour of a tree, with edges labeled to show the order in which they are traversed by the tour. The Euler tour technique (ETT), named after Leonhard Euler, is a method in graph theory for representing trees. The tree is viewed as a directed graph that contains two directed edges for each edge in the tree.
"A binary tree is threaded by making all right child pointers that would normally be null point to the in-order successor of the node (if it exists), and all left child pointers that would normally be null point to the in-order predecessor of the node." [1] This assumes the traversal order is the same as in-order traversal of the tree. However ...