Search results
Results from the WOW.Com Content Network
The tables below provides information on the variation of solubility of different substances (mostly inorganic compounds) in water with temperature, at one atmosphere pressure. Units of solubility are given in grams of substance per 100 millilitres of water (g/(100 mL)), unless shown otherwise. The substances are listed in alphabetical order.
The following chart shows the solubility of various ionic compounds in water at 1 atm pressure and room temperature (approx. 25 °C, 298.15 K). "Soluble" means the ionic compound doesn't precipitate, while "slightly soluble" and "insoluble" mean that a solid will precipitate; "slightly soluble" compounds like calcium sulfate may require heat to precipitate.
Toggle the table of contents. 1-Iodohexane. ... Solubility in water. ... The compound can also be prepared by treating 1-hexanol with iodine and triphenylphosphine. [5]
The principal limitation of the solubility parameter approach is that it applies only to associated solutions ("like dissolves like" or, technically speaking, positive deviations from Raoult's law); it cannot account for negative deviations from Raoult's law that result from effects such as solvation or the formation of electron donor ...
These iodine compounds are hypervalent because the iodine atom formally contains in its valence shell more than the 8 electrons required for the octet rule. Hypervalent iodine oxyanions are known for oxidation states +1, +3, +5, and +7; organic analogues of these moieties are known for each oxidation state except +7.
3 is soluble, the lead iodide PbI 2 is nearly insoluble at room temperature, and thus precipitates out. [17] Other soluble compounds containing lead(II) and iodide can be used instead, for example lead(II) acetate [12] and sodium iodide. The compound can also be synthesized by reacting iodine vapor with molten lead between 500 and 700 °C. [18]
Iodine is the fourth halogen, being a member of group 17 in the periodic table, below fluorine, chlorine, and bromine; since astatine and tennessine are radioactive, iodine is the heaviest stable halogen. Iodine has an electron configuration of [Kr]5s 2 4d 10 5p 5, with the seven electrons in the fifth and outermost shell being its valence ...
This application exploits the X-ray absorbing ability of the heavy iodine nucleus. A variety of agents are available commercially, many are derivatives of 1,3,5-triiodobenzene and contain about 50% by weight iodine. For most applications, the agent must be highly soluble in water and, of course, non-toxic and readily excreted.