Search results
Results from the WOW.Com Content Network
One such complicating feature is the relation between the viscosity model for a pure fluid and the model for a fluid mixture which is called mixing rules. When scientists and engineers use new arguments or theories to develop a new viscosity model, instead of improving the reigning model, it may lead to the first model in a new class of models.
The proportionality factor is the dynamic viscosity of the fluid, often simply referred to as the viscosity. It is denoted by the Greek letter mu ( μ ). The dynamic viscosity has the dimensions ( m a s s / l e n g t h ) / t i m e {\displaystyle \mathrm {(mass/length)/time} } , therefore resulting in the SI units and the derived units :
In particular, given a model for intermolecular interactions, one can calculate with high precision the viscosity of monatomic and other simple gases (for more complex gases, such as those composed of polar molecules, additional assumptions must be introduced which reduce the accuracy of the theory). [1]
Chapman–Enskog theory also predicts a simple relation between thermal conductivity, , and viscosity, , in the form =, where is the specific heat at constant volume and is a purely numerical factor. For spherically symmetric molecules, its value is predicted to be very close to 2.5 {\displaystyle 2.5} in a slightly model-dependent way.
One of the key predictions of the theory is the following relationship between viscosity , thermal conductivity, and specific heat : k = f μ c v {\displaystyle k=f\mu c_{v}} where f {\displaystyle f} is a constant which in general depends on the details of intermolecular interactions, but for spherically symmetric molecules is very close to 2. ...
The UNIQUAC model can be considered a second generation activity coefficient because its expression for the excess Gibbs energy consists of an entropy term in addition to an enthalpy term. Earlier activity coefficient models such as the Wilson equation and the non-random two-liquid model (NRTL model) only consist of enthalpy terms.
REFPROP is a software program for the prediction of thermophysical properties of fluids, developed by the National Institute of Standards and Technology (NIST). [1] [2] [3]The primary component of REFPROP is an equation of state for each implemented fluid.
Where: , , and are material coefficients: is the viscosity at zero shear rate (Pa.s), is the viscosity at infinite shear rate (Pa.s), is the characteristic time (s) and power index. The dynamics of fluid motions is an important area of physics, with many important and commercially significant applications.