Search results
Results from the WOW.Com Content Network
Color charge is a property of quarks and gluons that is related to the particles' strong interactions in the theory of quantum chromodynamics (QCD). Like electric charge, it determines how quarks and gluons interact through the strong force; however, rather than there being only positive and negative charges, there are three "charges", commonly called red, green, and blue.
Electric charges attract or repel one another with a force inversely proportional to the square of the distance between them: opposite charges attract, like charges repel. [ 7 ] Magnetic poles (or states of polarization at individual points) attract or repel one another in a manner similar to positive and negative charges and always exist as ...
Unlike the photon in electromagnetism, which is neutral, the gluon carries a color charge. Quarks and gluons are the only fundamental particles that carry non-vanishing color charge, and hence they participate in strong interactions only with each other. The strong force is the expression of the gluon interaction with other quark and gluon ...
Electric charge is a conserved property: the net charge of an isolated system, the quantity of positive charge minus the amount of negative charge, cannot change. Electric charge is carried by subatomic particles. In ordinary matter, negative charge is carried by electrons, and positive charge is carried by the protons in the nuclei of atoms ...
The electrostatic field (lines with arrows) of a nearby positive charge (+) causes the mobile charges in conductive objects to separate due to electrostatic induction. Negative charges (blue) are attracted and move to the surface of the object facing the external charge. Positive charges (red) are repelled and move to the surface facing away ...
Illustration of the electric field surrounding a positive (red) and a negative (blue) charge. Electrostatic fields are electric fields that do not change with time. Such fields are present when systems of charged matter are stationary, or when electric currents are unchanging. In that case, Coulomb's law fully describes the field. [17]
If both charges have the same sign (like charges) then the product is positive and the direction of the force on is given by ^; the charges repel each other. If the charges have opposite signs then the product is negative and the direction of the force on is ^; the charges attract each other.
One very important feature of the Hall effect is that it differentiates between positive charges moving in one direction and negative charges moving in the opposite. In the diagram above, the Hall effect with a negative charge carrier (the electron) is presented. But consider the same magnetic field and current are applied but the current is ...