enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. cis (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Cis_(mathematics)

    x is the argument of the complex number (angle between line to point and x-axis in polar form). The notation is less commonly used in mathematics than Euler's formula, e ix, which offers an even shorter notation for cos x + i sin x, but cis(x) is widely used as a name for this function in software libraries.

  3. De Moivre's formula - Wikipedia

    en.wikipedia.org/wiki/De_Moivre's_formula

    A modest extension of the version of de Moivre's formula given in this article can be used to find the n-th roots of a complex number for a non-zero integer n. (This is equivalent to raising to a power of 1 / n). If z is a complex number, written in polar form as = (⁡ + ⁡),

  4. Polar coordinate system - Wikipedia

    en.wikipedia.org/wiki/Polar_coordinate_system

    Two complex numbers can be multiplied by adding their arguments and multiplying their magnitudes. The complex number z can be represented in rectangular form as = + where i is the imaginary unit, or can alternatively be written in polar form as = (⁡ + ⁡) and from there, by Euler's formula, [14] as = = ⁡. where e is Euler's number, and φ ...

  5. Complex conjugate - Wikipedia

    en.wikipedia.org/wiki/Complex_conjugate

    In polar form, if and are real numbers then the conjugate of is . This can be shown using Euler's formula . The product of a complex number and its conjugate is a real number: a 2 + b 2 {\displaystyle a^{2}+b^{2}} (or r 2 {\displaystyle r^{2}} in polar coordinates ).

  6. Complex number - Wikipedia

    en.wikipedia.org/wiki/Complex_number

    A complex number can be visually represented as a pair of numbers (a, b) forming a vector on a diagram called an Argand diagram, representing the complex plane. Re is the real axis, Im is the imaginary axis, and i is the "imaginary unit", that satisfies i 2 = −1.

  7. Complex multiplication - Wikipedia

    en.wikipedia.org/wiki/Complex_multiplication

    An elliptic curve over the complex numbers is obtained as a quotient of the complex plane by a lattice Λ, here spanned by two fundamental periods ω 1 and ω 2. The four-torsion is also shown, corresponding to the lattice 1/4 Λ containing Λ. The example of an elliptic curve corresponding to the Gaussian integers occurs when ω 2 = i ω 1.

  8. Polarization of an algebraic form - Wikipedia

    en.wikipedia.org/wiki/Polarization_of_an...

    In mathematics, in particular in algebra, polarization is a technique for expressing a homogeneous polynomial in a simpler fashion by adjoining more variables. Specifically, given a homogeneous polynomial, polarization produces a unique symmetric multilinear form from which the original polynomial can be recovered by evaluating along a certain diagonal.

  9. Exponentiation - Wikipedia

    en.wikipedia.org/wiki/Exponentiation

    The polar form of the product of two complex numbers is obtained by multiplying the absolute values and adding the arguments. It follows that the polar form of an n th root of a complex number can be obtained by taking the n th root of the absolute value and dividing its argument by n: