enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hyperparameter optimization - Wikipedia

    en.wikipedia.org/wiki/Hyperparameter_optimization

    In machine learning, hyperparameter optimization [1] or tuning is the problem of choosing a set of optimal hyperparameters for a learning algorithm. A hyperparameter is a parameter whose value is used to control the learning process, which must be configured before the process starts. [2] [3]

  3. Hyperparameter (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Hyperparameter_(machine...

    In machine learning, a hyperparameter is a parameter that can be set in order to define any configurable part of a model's learning process. Hyperparameters can be classified as either model hyperparameters (such as the topology and size of a neural network) or algorithm hyperparameters (such as the learning rate and the batch size of an optimizer).

  4. Automated machine learning - Wikipedia

    en.wikipedia.org/wiki/Automated_machine_learning

    Automating the process of applying machine learning end-to-end additionally offers the advantages of producing simpler solutions, faster creation of those solutions, and models that often outperform hand-designed models. [4] Common techniques used in AutoML include hyperparameter optimization, meta-learning and neural architecture search.

  5. File:Hyperparameter Optimization using Random Search.svg

    en.wikipedia.org/wiki/File:Hyperparameter...

    English: In hyperparameter optimization with random search, the model is trained with randomly chosen hyperparameter values. The performance in relation to hyperparameters (colored lines, better performance = blue) does not influence the choice of trials. Finally, the model with the best performance is selected. In this example, 100 trials were ...

  6. File:Hyperparameter Optimization using Grid Search.svg

    en.wikipedia.org/wiki/File:Hyperparameter...

    English: For both hyperparameters of a model, a discrete set of values to search is defined (here, 10 values). In hyperparameter optimization with grid search, the model is trained using each combination of hyperparameter values (100 trials in this example) and the model performance (colored lines, better performance = blue) is saved.

  7. Test functions for optimization - Wikipedia

    en.wikipedia.org/.../Test_functions_for_optimization

    In the second part, test functions with their respective Pareto fronts for multi-objective optimization problems (MOP) are given. The artificial landscapes presented herein for single-objective optimization problems are taken from Bäck, [1] Haupt et al. [2] and from Rody Oldenhuis software. [3]

  8. Hyperparameter (Bayesian statistics) - Wikipedia

    en.wikipedia.org/wiki/Hyperparameter_(Bayesian...

    In Bayesian statistics, a hyperparameter is a parameter of a prior distribution; the term is used to distinguish them from parameters of the model for the underlying system under analysis. For example, if one is using a beta distribution to model the distribution of the parameter p of a Bernoulli distribution , then:

  9. Parameter space - Wikipedia

    en.wikipedia.org/wiki/Parameter_space

    [3] [4] For example, in multilayer perceptrons, the same function is preserved when permuting the nodes of a hidden layer, amounting to permuting weight matrices of the network. This property is known as equivariance to permutation of deep weight spaces. [3] The study seeks hyperparameter optimization.