Search results
Results from the WOW.Com Content Network
The fraction of the total energy density of our (flat or almost flat) universe that is dark energy, , is estimated to be 0.669 ± 0.038 based on the 2018 Dark Energy Survey results using Type Ia supernovae [8] or 0.6847 ± 0.0073 based on the 2018 release of Planck satellite data, or more than 68.3 % (2018 estimate) of the mass–energy density ...
In standard cosmology, there are three components of the universe: matter, radiation, and dark energy. This matter is anything whose energy density scales with the inverse cube of the scale factor, i.e., ρ ∝ a −3, while radiation is anything whose energy density scales to the inverse fourth power of the scale factor (ρ ∝ a −4).
Since the 1990s, studies have shown that, assuming the cosmological principle, around 68% of the mass–energy density of the universe can be attributed to dark energy. [6] [7] [8] The cosmological constant Λ is the simplest possible explanation for dark energy, and is used in the standard model of cosmology known as the ΛCDM model.
In astronomy and cosmology, the dark fluid theory attempt to explain dark matter and dark energy in a single framework, as suggested by cosmologist Alexandre Arbey in 2005. [1] [2] The theory proposes that dark matter and dark energy are not separate physical phenomena, nor do they have separate origins, but that they are strongly linked together and can be considered as two facets of a single ...
The ΛCDM (Lambda cold dark matter) or Lambda-CDM model is a parametrization of the Big Bang cosmological model in which the universe contains a cosmological constant, denoted by Lambda (Greek Λ), associated with dark energy, and cold dark matter (abbreviated CDM). It is frequently referred to as the standard model of Big Bang cosmology. [40] [41]
Dark energy dominates the total energy (74%) while dark matter (22%) constitutes most of the mass. Of the remaining baryonic matter (4%), only one tenth is compact. In February 2015, the European-led research team behind the Planck cosmology probe released new data refining these values to 4.9% ordinary matter, 25.9% dark matter and 69.1% dark ...
One exciting possibility is that a previously unknown form of matter from the early universe might have left a trace on our history. This is known as “early dark energy,” thought to be present ...
The measured dark energy density is Ω Λ ≈ 0.690; the observed ordinary (baryonic) matter energy density is Ω b ≈ 0.0482 and the energy density of radiation is negligible. This leaves a missing Ω dm ≈ 0.258 which nonetheless behaves like matter (see technical definition section above) – dark matter.