Search results
Results from the WOW.Com Content Network
Eudoxus (408–355 BCE) and Theaetetus (417–369 BCE) formulated theorems but did not prove them. Aristotle (384–322 BCE) said definitions should describe the concept being defined in terms of other concepts already known. Mathematical proof was revolutionized by Euclid (300 BCE), who introduced the axiomatic method still in use today.
The corresponding conditional of a valid argument is a logical truth and the negation of its corresponding conditional is a contradiction. The conclusion is a necessary consequence of its premises. An argument that is not valid is said to be "invalid". An example of a valid (and sound) argument is given by the following well-known syllogism:
This is a valid argument since it is not possible for the conclusion to be false if the premises are true. (It is conceivable that there may have been an intruder that the dog did not detect, but that does not invalidate the argument; the first premise is "if the dog detects an intruder".
In this general sense, proof by contradiction is also known as indirect proof, proof by assuming the opposite, [2] and reductio ad impossibile. [3] A mathematical proof employing proof by contradiction usually proceeds as follows: The proposition to be proved is P. We assume P to be false, i.e., we assume ¬P. It is then shown that ¬P implies ...
A statement is logically true if, and only if its opposite is logically false. The opposite statements must contradict one another. In this way all logical connectives can be expressed in terms of preserving logical truth. The logical form of a sentence is determined by its semantic or syntactic structure and by the placement of logical constants.
It is not possible to replace "not provable" with "false" in a Gödel sentence because the predicate "Q is the Gödel number of a false formula" cannot be represented as a formula of arithmetic. This result, known as Tarski's undefinability theorem , was discovered independently both by Gödel, when he was working on the proof of the ...
A sentence can be viewed as expressing a proposition, something that must be true or false. The restriction of having no free variables is needed to make sure that sentences can have concrete, fixed truth values : as the free variables of a (general) formula can range over several values, the truth value of such a formula may vary.
In propositional logic, affirming the consequent (also known as converse error, fallacy of the converse, or confusion of necessity and sufficiency) is a formal fallacy (or an invalid form of argument) that is committed when, in the context of an indicative conditional statement, it is stated that because the consequent is true, therefore the ...