Search results
Results from the WOW.Com Content Network
In chemistry, the hydrogenation of carbon–nitrogen double bonds is the addition of the elements of dihydrogen (H 2) across a carbon–nitrogen double bond, forming amines or amine derivatives. [1] Although a variety of general methods have been developed for the enantioselective hydrogenation of ketones, [ 2 ] methods for the hydrogenation of ...
[6] [7] According to McQuade, the reaction between methyl acrylate and p-nitrobenzaldehyde is second-order relative to the aldehyde. Moreover, it showed a significant kinetic isotope effect for the acrylate's α-hydrogen (5.2 in DMSO, but ≥2 in all solvents), which would imply that proton abstraction is the rate-determining step.
The intermediate imine can be isolated or reacted in-situ with a suitable reducing agent (e.g., sodium borohydride) to produce the amine product. [2] Intramolecular reductive amination can also occur to afford a cyclic amine product if the amine and carbonyl are on the same molecule of starting material. [4]
2 R-C≡N + 4 H 2 → (R-CH 2) 2 NH + NH 3 3 R-C≡N + 6 H 2 → (R-CH 2) 3 N + 2 NH 3. Such reactions proceed via enamine intermediates. [8] The most important reaction condition for selective primary amine production is catalyst choice. [1] Other important factors include solvent choice, solution pH, steric effects, temperature, and the ...
The addition of hydrogen and an amino group (NR 2) using reagents other than the amine HNR 2 is known as a "formal hydroamination" reaction. Although the advantages of atom economy and/or ready available of the nitrogen source are diminished as a result, the greater thermodynamic driving force, as well as ability to tune the aminating reagent ...
The Knoevenagel condensation is a key step in the commercial production of the antimalarial drug lumefantrine (a component of Coartem): [8] Final step in Lumefantrine synthesis The initial reaction product is a 50:50 mixture of E and Z isomers but beecause both isomers equilibrate rapidly around their common hydroxyl precursor, the more stable ...
First phosphine imine-forming reaction is conducted involving treatment of the azide with the phosphine. The intermediate, e.g. triphenylphosphine phenylimide, is then subjected to hydrolysis to produce a phosphine oxide and an amine: R 3 P=NR' + H 2 O → R 3 P=O + R'NH 2. The overall conversion is a mild method of reducing an azide to an amine.
Catalytic hydrogenation using platinum(IV) oxide (PtO 2) [23] or Raney nickel [24] Iron metal in refluxing acetic acid [25] Samarium diiodide [26] Raney nickel, platinum on carbon, or zinc dust and formic acid or ammonium formate [6] α,β-Unsaturated nitro compounds can be reduced to saturated amines by: Catalytic hydrogenation over palladium ...