Search results
Results from the WOW.Com Content Network
Gradient descent with momentum remembers the solution update at each iteration, and determines the next update as a linear combination of the gradient and the previous update. For unconstrained quadratic minimization, a theoretical convergence rate bound of the heavy ball method is asymptotically the same as that for the optimal conjugate ...
Strictly speaking, the term backpropagation refers only to an algorithm for efficiently computing the gradient, not how the gradient is used; but the term is often used loosely to refer to the entire learning algorithm – including how the gradient is used, such as by stochastic gradient descent, or as an intermediate step in a more ...
By defining the sequence + = and using the above identity, we can interpret the proximal operator as a gradient descent algorithm over the Moreau envelope. Using Fenchel's duality theorem, one can derive the following dual formulation of the Moreau envelope:
Gradient descent is one such algorithm. If θ i ∗ {\displaystyle \theta _{i}^{*}} is the approximation of the optimal θ {\displaystyle \theta } after i {\displaystyle i} steps, a learning curve is the plot of
The associated process theory of neuronal dynamics is based on minimising free energy through gradient descent. This corresponds to generalised Bayesian filtering (where ~ denotes a variable in generalised coordinates of motion and D {\displaystyle D} is a derivative matrix operator): [ 39 ]
Stochastic gradient descent competes with the L-BFGS algorithm, [citation needed] which is also widely used. Stochastic gradient descent has been used since at least 1960 for training linear regression models, originally under the name ADALINE. [25] Another stochastic gradient descent algorithm is the least mean squares (LMS) adaptive filter.
Another way is the so-called adaptive standard GD or SGD, some representatives are Adam, Adadelta, RMSProp and so on, see the article on Stochastic gradient descent. In adaptive standard GD or SGD, learning rates are allowed to vary at each iterate step n, but in a different manner from Backtracking line search for gradient descent.
In optimization, a descent direction is a vector that points towards a local minimum of an objective function :.. Computing by an iterative method, such as line search defines a descent direction at the th iterate to be any such that , <, where , denotes the inner product.