Search results
Results from the WOW.Com Content Network
In mathematics, reflection symmetry, line symmetry, mirror symmetry, or mirror-image symmetry is symmetry with respect to a reflection. That is, a figure which does not change upon undergoing a reflection has reflectional symmetry. In 2-dimensional space, there is a line/axis of symmetry, in 3-dimensional space, there is a plane of symmetry
Example pattern with this symmetry group: A typical example of glide reflection in everyday life would be the track of footprints left in the sand by a person walking on a beach. Frieze group nr. 6 (glide-reflections, translations and rotations) is generated by a glide reflection and a rotation about a point on the line of reflection.
The triangles with reflection symmetry are isosceles, the quadrilaterals with this symmetry are kites and isosceles trapezoids. [11] For each line or plane of reflection, the symmetry group is isomorphic with C s (see point groups in three dimensions for more), one of the three types of order two (involutions), hence algebraically isomorphic to ...
The type of symmetry is determined by the way the pieces are organized, or by the type of transformation: An object has reflectional symmetry (line or mirror symmetry) if there is a line (or in 3D a plane) going through it which divides it into two pieces that are mirror images of each other. [6]
A Line symmetry of a system of differential equations is a continuous symmetry of the system of differential ... that is reflection in a point, for example zero.
In a Euclidean vector space, the reflection in the point situated at the origin is the same as vector negation. Other examples include reflections in a line in three-dimensional space. Typically, however, unqualified use of the term "reflection" means reflection in a hyperplane. Some mathematicians use "flip" as a synonym for "reflection". [2 ...
Rotational symmetry of order two ditto; this means also that 4- and 6-fold rotation centres at least keep 2-fold rotational symmetry. Reflection in a line and glide reflection are preserved on expansion/contraction along, or perpendicular to, the axis of reflection and glide reflection.
It is also the symmetry of a pyritohedron, which is extremely similar to the cube described, with each rectangle replaced by a pentagon with one symmetry axis and 4 equal sides and 1 different side (the one corresponding to the line segment dividing the cube's face); i.e., the cube's faces bulge out at the dividing line and become narrower there.