Search results
Results from the WOW.Com Content Network
In mathematics, the infinite series 1 / 2 + 1 / 4 + 1 / 8 + 1 / 16 + ··· is an elementary example of a geometric series that converges absolutely. The sum of the series is 1. In summation notation, this may be expressed as
Today, a more standard phrasing of Archimedes' proposition is that the partial sums of the series 1 + 1 / 4 + 1 / 16 + ⋯ are: + + + + = +. This form can be proved by multiplying both sides by 1 − 1 / 4 and observing that all but the first and the last of the terms on the left-hand side of the equation cancel in pairs.
The roots of the quadratic function y = 1 / 2 x 2 − 3x + 5 / 2 are the places where the graph intersects the x-axis, the values x = 1 and x = 5. They can be found via the quadratic formula. In elementary algebra, the quadratic formula is a closed-form expression describing the solutions of a quadratic equation.
The idea becomes clearer by considering the general series 1 − 2x + 3x 2 − 4x 3 + 5x 4 − 6x 5 + &c. that arises while expanding the expression 1 ⁄ (1+x) 2, which this series is indeed equal to after we set x = 1. [12]
a 0 = 1, a 1 = 2, a 2 = 4, a 3 = 8,... The sequence of forward differences is then Δa 0 = a 1 − a 0 = 2 − 1 = 1, Δa 1 = a 2 − a 1 = 4 − 2 = 2, Δa 2 = a 3 − a 2 = 8 − 4 = 4, Δa 3 = a 4 − a 3 = 16 − 8 = 8,... which is just the same sequence. Hence the iterated forward difference sequences all start with Δ n a 0 = 1 for every ...
The solution set for the equations x − y = −1 and 3x + y = 9 is the single point (2, 3). A solution of a linear system is an assignment of values to the variables ,, …, such that each of the equations is satisfied. The set of all possible solutions is called the solution set. [5]
Demonstration of 2 / 3 via a zero-value game. A slight rearrangement of the series reads + + =. The series has the form of a positive integer plus a series containing every negative power of two with either a positive or negative sign, so it can be translated into the infinite blue-red Hackenbush string that represents the surreal number 1 / 3 :
with the coefficients of the q-expansion being OEIS: A003114 and OEIS: A003106, respectively, where (;) denotes the infinite q-Pochhammer symbol, j is the j-function, and 2 F 1 is the hypergeometric function. The Rogers–Ramanujan continued fraction is then