enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Integral - Wikipedia

    en.wikipedia.org/wiki/Integral

    A line integral (sometimes called a path integral) is an integral where the function to be integrated is evaluated along a curve. [42] Various different line integrals are in use. In the case of a closed curve it is also called a contour integral. The function to be integrated may be a scalar field or a vector field.

  3. Differentiation of integrals - Wikipedia

    en.wikipedia.org/wiki/Differentiation_of_integrals

    The problem of the differentiation of integrals is much harder in an infinite-dimensional setting. Consider a separable Hilbert space (H, , ) equipped with a Gaussian measure γ. As stated in the article on the Vitali covering theorem, the Vitali covering theorem fails for Gaussian measures on infinite-dimensional Hilbert spaces. Two results of ...

  4. Integral equation - Wikipedia

    en.wikipedia.org/wiki/Integral_equation

    This equation is a special form of the more general weakly singular Volterra integral equation of the first kind, called Abel's integral equation: [7] = Strongly singular: An integral equation is called strongly singular if the integral is defined by a special regularisation, for example, by the Cauchy principal value.

  5. Fundamental theorem of calculus - Wikipedia

    en.wikipedia.org/wiki/Fundamental_theorem_of...

    Specifically, if a continuous function F(x) admits a derivative f(x) at all but countably many points, then f(x) is Henstock–Kurzweil integrable and F(b) − F(a) is equal to the integral of f on [a, b]. The difference here is that the integrability of f does not need to be assumed. [12]

  6. Integro-differential equation - Wikipedia

    en.wikipedia.org/wiki/Integro-differential_equation

    Consider the following second-order problem, ′ + + = () =, where = {,, <is the Heaviside step function.The Laplace transform is defined by, = {()} = ().Upon taking term-by-term Laplace transforms, and utilising the rules for derivatives and integrals, the integro-differential equation is converted into the following algebraic equation,

  7. Leibniz integral rule - Wikipedia

    en.wikipedia.org/wiki/Leibniz_integral_rule

    In calculus, the Leibniz integral rule for differentiation under the integral sign, named after Gottfried Wilhelm Leibniz, states that for an integral of the form () (,), where < (), < and the integrands are functions dependent on , the derivative of this integral is expressible as (() (,)) = (, ()) (, ()) + () (,) where the partial derivative indicates that inside the integral, only the ...

  8. Integration by parts - Wikipedia

    en.wikipedia.org/wiki/Integration_by_parts

    Taking the difference of each side between two values = and = and applying the fundamental theorem of calculus gives the definite integral version: ′ = () () ′ (). The original integral ∫ u v ′ d x {\displaystyle \int uv'\,dx} contains the derivative v' ; to apply the theorem, one must find v , the antiderivative of v' , then evaluate ...

  9. Antiderivative - Wikipedia

    en.wikipedia.org/wiki/Antiderivative

    The slope field of () = +, showing three of the infinitely many solutions that can be produced by varying the arbitrary constant c.. In calculus, an antiderivative, inverse derivative, primitive function, primitive integral or indefinite integral [Note 1] of a continuous function f is a differentiable function F whose derivative is equal to the original function f.