enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Van 't Hoff equation - Wikipedia

    en.wikipedia.org/wiki/Van_'t_Hoff_equation

    The Van 't Hoff equation relates the change in the equilibrium constant, K eq, of a chemical reaction to the change in temperature, T, given the standard enthalpy change, Δ r H ⊖, for the process. The subscript r {\displaystyle r} means "reaction" and the superscript ⊖ {\displaystyle \ominus } means "standard".

  3. Thermochemical equation - Wikipedia

    en.wikipedia.org/wiki/Thermochemical_equation

    Enthalpy is the transfer of energy in a reaction (for chemical reactions, it is in the form of heat) and is the change in enthalpy. Δ H {\displaystyle \Delta H} is a state function, meaning that Δ H {\displaystyle \Delta H} is independent of processes occurring between initial and final states.

  4. Stefan problem - Wikipedia

    en.wikipedia.org/wiki/Stefan_problem

    The classical Stefan problem aims to describe the evolution of the boundary between two phases of a material undergoing a phase change, for example the melting of a solid, such as ice to water. This is accomplished by solving heat equations in both regions, subject to given boundary and initial conditions. At the interface between the phases ...

  5. Thermodynamic equations - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_equations

    The change in the state of the system can be seen as a path in this state space. This change is called a thermodynamic process. Thermodynamic equations are now used to express the relationships between the state parameters at these different equilibrium state.

  6. Gibbs–Helmholtz equation - Wikipedia

    en.wikipedia.org/wiki/Gibbs–Helmholtz_equation

    The definition of the Gibbs function is = + where H is the enthalpy defined by: = +. Taking differentials of each definition to find dH and dG, then using the fundamental thermodynamic relation (always true for reversible or irreversible processes): = where S is the entropy, V is volume, (minus sign due to reversibility, in which dU = 0: work other than pressure-volume may be done and is equal ...

  7. Fundamental thermodynamic relation - Wikipedia

    en.wikipedia.org/wiki/Fundamental_thermodynamic...

    The above derivation uses the first and second laws of thermodynamics. The first law of thermodynamics is essentially a definition of heat, i.e. heat is the change in the internal energy of a system that is not caused by a change of the external parameters of the system.

  8. Bridgman's thermodynamic equations - Wikipedia

    en.wikipedia.org/wiki/Bridgman's_thermodynamic...

    Many thermodynamic equations are expressed in terms of partial derivatives. For example, the expression for the heat capacity at constant pressure is: = which is the partial derivative of the enthalpy with respect to temperature while holding pressure constant.

  9. Thermodynamics - Wikipedia

    en.wikipedia.org/wiki/Thermodynamics

    Transfers of energy as work, or as heat, or of matter, between the system and the surroundings, take place through the walls, according to their respective permeabilities. Matter or energy that pass across the boundary so as to effect a change in the internal energy of the system need to be accounted for in the energy balance equation.