enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Harmonic number - Wikipedia

    en.wikipedia.org/wiki/Harmonic_number

    The harmonic number with = ⌊ ⌋ (red line) with its asymptotic limit + ⁡ (blue line) where is the Euler–Mascheroni constant.. In mathematics, the n-th harmonic number is the sum of the reciprocals of the first n natural numbers: [1] = + + + + = =.

  3. Harmonic progression (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Harmonic_progression...

    In mathematics, a harmonic progression (or harmonic sequence) is a progression formed by taking the reciprocals of an arithmetic progression, which is also known as an arithmetic sequence. Equivalently, a sequence is a harmonic progression when each term is the harmonic mean of the neighboring terms.

  4. Harmonic series (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Harmonic_series_(mathematics)

    [1] [2] Every term of the harmonic series after the first is the harmonic mean of the neighboring terms, so the terms form a harmonic progression; the phrases harmonic mean and harmonic progression likewise derive from music. [2] Beyond music, harmonic sequences have also had a certain popularity with architects.

  5. List of sums of reciprocals - Wikipedia

    en.wikipedia.org/wiki/List_of_sums_of_reciprocals

    A harmonic divisor number is a positive integer whose divisors have a harmonic mean that is an integer. The first five of these are 1, 6, 28, 140, and 270. It is not known whether any harmonic divisor numbers (besides 1) are odd, but there are no odd ones less than 10 24. The sum of the reciprocals of the divisors of a perfect number is 2.

  6. nth-term test - Wikipedia

    en.wikipedia.org/wiki/Nth-term_test

    In mathematics, the nth-term test for divergence [1] is a simple test for the divergence of an infinite series: If lim n → ∞ a n ≠ 0 {\displaystyle \lim _{n\to \infty }a_{n}\neq 0} or if the limit does not exist, then ∑ n = 1 ∞ a n {\displaystyle \sum _{n=1}^{\infty }a_{n}} diverges.

  7. Stieltjes constants - Wikipedia

    en.wikipedia.org/wiki/Stieltjes_constants

    The area of the blue region converges on the Euler–Mascheroni constant, which is the 0th Stieltjes constant.. In mathematics, the Stieltjes constants are the numbers that occur in the Laurent series expansion of the Riemann zeta function:

  8. Harmonic analysis - Wikipedia

    en.wikipedia.org/wiki/Harmonic_analysis

    Harmonic analysis is a branch of mathematics concerned with investigating the connections between a function and its representation in frequency.The frequency representation is found by using the Fourier transform for functions on unbounded domains such as the full real line or by Fourier series for functions on bounded domains, especially periodic functions on finite intervals.

  9. Hyperharmonic number - Wikipedia

    en.wikipedia.org/wiki/Hyperharmonic_number

    It is known, that the harmonic numbers are never integers except the case n=1. The same question can be posed with respect to the hyperharmonic numbers: are there integer hyperharmonic numbers? István Mező proved [5] that if r=2 or r=3, these numbers are never integers except the trivial case when n=1.