Search results
Results from the WOW.Com Content Network
In particular, IEEE 754 already uses "canonical NaN" with the meaning of "canonical encoding of a NaN" (e.g. "isCanonical(x) is true if and only if x is a finite number, infinity, or NaN that is canonical." page 38, but also for totalOrder page 42), thus a different meaning from what is used here. Please help clarify the section.
As with IEEE 754-1985, the biased-exponent field is filled with all 1 bits to indicate either infinity (trailing significand field = 0) or a NaN (trailing significand field ≠ 0). For NaNs, quiet NaNs and signaling NaNs are distinguished by using the most significant bit of the trailing significand field exclusively, [ f ] and the payload is ...
Some operations of floating-point arithmetic are invalid, such as taking the square root of a negative number. The act of reaching an invalid result is called a floating-point exception. An exceptional result is represented by a special code called a NaN, for "Not a Number". All NaNs in IEEE 754-1985 have this format: sign = either 0 or 1.
If an IEEE 754 single-precision number is converted to a decimal string with at least 9 significant digits, and then converted back to single-precision representation, the final result must match the original number. [6] The sign bit determines the sign of the number, which is the sign of the significand as well. "1" stands for negative.
A NaN (not a number) value represents undefined results. In IEEE arithmetic, division of 0/0 or ∞/∞ results in NaN, but otherwise division always produces a well-defined result. Dividing any non-zero number by positive zero (+0) results in an infinity of the same sign as the dividend.
The smallest possible float size that follows all IEEE principles, including normalized numbers, subnormal numbers, signed zero, signed infinity, and multiple NaN values, is a 4-bit float with 1-bit sign, 2-bit exponent, and 1-bit mantissa. [11]
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Decimal64 supports 'normal' values that can have 16 digit precision from ±1.000 000 000 000 000 × 10 ^ −383 to ±9.999 999 999 999 999 × 10 ^ 384, plus 'denormal' values with ramp-down relative precision down to ±1.×10 −398, signed zeros, signed infinities and NaN (Not a Number). This format supports two different encodings.