Search results
Results from the WOW.Com Content Network
A representative pressure–volume diagram for a refrigeration cycle. Vapour-compression refrigeration or vapor-compression refrigeration system (VCRS), [1] in which the refrigerant undergoes phase changes, is one of the many refrigeration cycles and is the most widely used method for air conditioning of buildings and automobiles.
Vapor-compression refrigeration [6] For comparison, a simple stylized diagram of a heat pump's vapor-compression refrigeration cycle: 1) condenser, 2) expansion valve, 3) evaporator, 4) compressor (Note that this diagram is flipped vertically and horizontally compared to the previous one) [7] Temperature–entropy diagram of the vapor-compression cycle.
A chiller is a machine that removes heat from a liquid coolant via a vapor-compression, adsorption refrigeration, or absorption refrigeration cycles. This liquid can then be circulated through a heat exchanger to cool equipment, or another process stream (such as air or process water).
The most common refrigeration cycle is the vapor compression cycle, which models systems using refrigerants that change phase. The absorption refrigeration cycle is an alternative that absorbs the refrigerant in a liquid solution rather than evaporating it. Gas refrigeration cycles include the reversed Brayton cycle and the Hampson–Linde cycle.
A cascade refrigeration cycle is a multi-stage thermodynamic cycle. An example two-stage process is shown at right. (Bottom on mobile) The cascade cycle is often employed for devices such as ULT freezers. [1] In a cascade refrigeration system, two or more vapor-compression cycles with different refrigerants are used.
Common absorption refrigerators use a refrigerant with a very low boiling point (less than −18 °C (0 °F)) just like compressor refrigerators.Compression refrigerators typically use an HCFC or HFC, while absorption refrigerators typically use ammonia or water and need at least a second fluid able to absorb the coolant, the absorbent, respectively water (for ammonia) or brine (for water).
A vapor-compression evaporator, like most evaporators, can make reasonably clean water from any water source. In a salt crystallizer, for example, a typical analysis of the resulting condensate shows a typical content of residual salt not higher than 50 ppm or, in terms of electrical conductance , not higher than 10 μS/cm .
The operating principle of the refrigeration cycle was described mathematically by Sadi Carnot in 1824 as a heat engine. The most common types of refrigeration systems use the reverse-Rankine vapor-compression refrigeration cycle, although absorption heat pumps are used in a minority of applications. Cyclic refrigeration can be classified as: