Search results
Results from the WOW.Com Content Network
In geometry, a tesseract or 4-cube is a four-dimensional hypercube, analogous to a two-dimensional square and a three-dimensional cube. [1] Just as the perimeter of the square consists of four edges and the surface of the cube consists of six square faces, the hypersurface of the tesseract consists of eight cubical cells, meeting at right angles.
Rotating model of the diamond cubic crystal structure 3D ball-and-stick model of a diamond lattice Pole figure in stereographic projection of the diamond lattice showing the 3-fold symmetry along the [111] direction. In crystallography, the diamond cubic crystal structure is a repeating pattern of 8 atoms that certain materials may adopt as ...
Net. In four-dimensional geometry, the 24-cell is the convex regular 4-polytope [1] (four-dimensional analogue of a Platonic solid) with Schläfli symbol {3,4,3}. It is also called C 24, or the icositetrachoron, [2] octaplex (short for "octahedral complex"), icosatetrahedroid, [3] octacube, hyper-diamond or polyoctahedron, being constructed of octahedral cells.
The vertex figure of the 24-cell honeycomb is a tesseract (4-dimensional cube). So there are 16 edges, 32 triangles, 24 octahedra, and 8 24-cells meeting at every vertex. So there are 16 edges, 32 triangles, 24 octahedra, and 8 24-cells meeting at every vertex.
The two-dimensional analogue of a 4-polytope is a polygon, and the three-dimensional analogue is a polyhedron. Topologically 4-polytopes are closely related to the uniform honeycombs , such as the cubic honeycomb , which tessellate 3-space; similarly the 3D cube is related to the infinite 2D square tiling .
The regular convex 4-polytopes are the four-dimensional analogues of the Platonic solids in three dimensions and the convex regular polygons in two dimensions. Each convex regular 4-polytope is bounded by a set of 3-dimensional cells which are all Platonic solids of the same type and size.
In geometry, a hypercube is an n-dimensional analogue of a square (n = 2) and a cube (n = 3); the special case for n = 4 is known as a tesseract.It is a closed, compact, convex figure whose 1-skeleton consists of groups of opposite parallel line segments aligned in each of the space's dimensions, perpendicular to each other and of the same length.
Four-dimensional space (4D) is the mathematical extension of the concept of three-dimensional space (3D). Three-dimensional space is the simplest possible abstraction of the observation that one needs only three numbers, called dimensions, to describe the sizes or locations of objects in the everyday world.