Search results
Results from the WOW.Com Content Network
The following table defines the possible outcomes when testing multiple null hypotheses. Suppose we have a number m of null hypotheses, denoted by: H 1, H 2, ..., H m. Using a statistical test, we reject the null hypothesis if the test is declared significant. We do not reject the null hypothesis if the test is non-significant.
Thus the counternull is an alternative hypothesis that, when used to replace the null hypothesis, generates the same p-value as had the original null hypothesis of “no difference.” [3] Some researchers contend that reporting the counternull, in addition to the p -value, serves to counter two common errors of judgment: [ 4 ]
In statistical hypothesis testing, the alternative hypothesis is one of the proposed propositions in the hypothesis test. In general the goal of hypothesis test is to demonstrate that in the given condition, there is sufficient evidence supporting the credibility of alternative hypothesis instead of the exclusive proposition in the test (null hypothesis). [1]
When the null hypothesis is predicted by theory, a more precise experiment will be a more severe test of the underlying theory. When the null hypothesis defaults to "no difference" or "no effect", a more precise experiment is a less severe test of the theory that motivated performing the experiment. [4]
The result is "significant" by a frequentist test, at, for example, the 5% level, indicating sufficient evidence to reject the null hypothesis, and; The posterior probability of the null hypothesis is high, indicating strong evidence that the null hypothesis is in better agreement with the data than is the alternative hypothesis.
the exact sampling distribution of T under the null hypothesis is the binomial distribution with parameters 0.5 and 100. the value of T can be compared with its expected value under the null hypothesis of 50, and since the sample size is large, a normal distribution can be used as an approximation to the sampling distribution either for T or ...
Thus, the null hypothesis is rejected if >, (where , is the upper tail critical value for the distribution). Bartlett's test is a modification of the corresponding likelihood ratio test designed to make the approximation to the χ k − 1 2 {\displaystyle \chi _{k-1}^{2}} distribution better (Bartlett, 1937).
Equivalence tests are a variety of hypothesis tests used to draw statistical inferences from observed data. In these tests, the null hypothesis is defined as an effect large enough to be deemed interesting, specified by an equivalence bound. The alternative hypothesis is any effect that is less extreme than said equivalence bound.