Search results
Results from the WOW.Com Content Network
In physics, the atomic form factor, or atomic scattering factor, is a measure of the scattering amplitude of a wave by an isolated atom. The atomic form factor depends on the type of scattering , which in turn depends on the nature of the incident radiation, typically X-ray , electron or neutron .
In electronics and electrical engineering, the form factor of an alternating current waveform (signal) is the ratio of the RMS (root mean square) value to the average value (mathematical mean of absolute values of all points on the waveform). [1] It identifies the ratio of the direct current of equal power relative to the given alternating ...
Form factor (quantum field theory), a semi-empirical formula used in effective quantum field theories; Atomic form factor, or atomic scattering factor, a measure of the amplitude of a wave scattered from an isolated atom; Electric form factor, the Fourier transform of electric charge distribution in space
Form factor is a hardware design aspect that defines and prescribes the size, shape, and other physical specifications of components, particularly in electronics. [ 1 ] [ 2 ] A form factor may represent a broad class of similarly sized components, or it may prescribe a specific standard.
A digital signal is an abstraction that is discrete in time and amplitude. The signal's value only exists at regular time intervals, since only the values of the corresponding physical signal at those sampled moments are significant for further digital processing. The digital signal is a sequence of codes drawn from a finite set of values. [10]
The molecules are delivered into communications media such as air and water for transmission. The technique also is not subject to the requirement of using antennas that are sized to a specific ratio of the wavelength of the signal. Molecular communication signals can be made biocompatible and require very little energy. [2] [3]
In elementary particle physics and mathematical physics, in particular in effective field theory, a form factor is a function that encapsulates the properties of a certain particle interaction without including all of the underlying physics, but instead, providing the momentum dependence of suitable matrix elements.
The electric form factor is the Fourier transform of electric charge distribution in a nucleon. Nucleons (protons and neutrons) are made of up and down quarks which have charges associated with them (2/3 & -1/3, respectively). The study of Form Factors falls within the regime of Perturbative QCD. The idea originated from young William Thomson. [1]