Search results
Results from the WOW.Com Content Network
The bond energy is significantly weaker than those of Cl 2 or Br 2 molecules and similar to the easily cleaved oxygen–oxygen bonds of peroxides or nitrogen–nitrogen bonds of hydrazines. [8] The covalent radius of fluorine of about 71 picometers found in F 2 molecules is significantly larger than that in other compounds because of this weak ...
In 1935, Linus Pauling used the ice rules to calculate the residual entropy (zero temperature entropy) of ice I h. [3] For this (and other) reasons the rules are sometimes mis-attributed and referred to as "Pauling's ice rules" (not to be confused with Pauling's rules for ionic crystals). A nice figure of the resulting structure can be found in ...
[21] [22] Conversely, bonds to other atoms are very strong because of fluorine's high electronegativity. Unreactive substances like powdered steel, glass fragments, and asbestos fibers react quickly with cold fluorine gas; wood and water spontaneously combust under a fluorine jet. [5] [23]
The iron compounds produced on the largest scale in industry are iron(II) sulfate (FeSO 4 ·7H 2 O) and iron(III) chloride (FeCl 3). The former is one of the most readily available sources of iron(II), but is less stable to aerial oxidation than Mohr's salt ( (NH 4 ) 2 Fe(SO 4 ) 2 ·6H 2 O ).
Iron(II) fluoride or ferrous fluoride is an inorganic compound with the molecular formula FeF 2. It forms a tetrahydrate FeF 2 ·4H 2 O that is often referred to by the same names. The anhydrous and hydrated forms are white crystalline solids.
Iron(III) fluoride, also known as ferric fluoride, are inorganic compounds with the formula FeF 3 (H 2 O) x where x = 0 or 3. They are mainly of interest by researchers, unlike the related iron(III) chloride. Anhydrous iron(III) fluoride is white, whereas the hydrated forms are light pink. [2]
Iron(II) oxide (ferrous oxide), FeO, is a very complicated material that contains iron(II). Iron(II) is found in many minerals and solids. Examples include the sulfide and oxide, FeS and FeO. These formulas are deceptively simple because these sulfides and oxides are often nonstoichiometric.
Iron(III) oxide is a product of the oxidation of iron. It can be prepared in the laboratory by electrolyzing a solution of sodium bicarbonate, an inert electrolyte, with an iron anode: 4 Fe + 3 O 2 + 2 H 2 O → 4 FeO(OH) The resulting hydrated iron(III) oxide, written here as FeO(OH), dehydrates around 200 °C. [18] [19] 2 FeO(OH) → Fe 2 O 3 ...