Search results
Results from the WOW.Com Content Network
For a polyhedron, the defect at a vertex equals 2π minus the sum of all the angles at the vertex (all the faces at the vertex are included). If a polyhedron is convex, then the defect of each vertex is always positive. If the sum of the angles exceeds a full turn, as occurs in some vertices of many non-convex polyhedra, then the defect is ...
In biochemistry, a Ramachandran plot (also known as a Rama plot, a Ramachandran diagram or a [φ,ψ] plot), originally developed in 1963 by G. N. Ramachandran, C. Ramakrishnan, and V. Sasisekharan, [1] is a way to visualize energetically allowed regions for backbone dihedral angles ( also called as torsional angles , phi and psi angles ) ψ ...
Example Notes Afterimage illusion An afterimage or ghost image is a visual illusion involving an image continuing to appear in one's vision after the exposure to the original image has ceased. Afterimage on empty shape (also known as color dove illusion) This type of illusion is designed to exploit graphical similarities. Ambiguous image
The widely accepted interpretation of, e.g. the Poggendorff and Hering illusions as manifestation of expansion of acute angles at line intersections, is an example of successful implementation of a "bottom-up," physiological explanation of a geometrical–optical illusion. Ponzo illusion in a purely schematic form and, below, with perspective clues
This is a list of two-dimensional geometric shapes in Euclidean and other geometries. For mathematical objects in more dimensions, see list of mathematical shapes. For a broader scope, see list of shapes.
The foreshortening factor (1/2 in this example) is inversely proportional to the tangent of the angle (63.43° in this example) between the projection plane (colored brown) and the projection lines (dotted). Front view of the same. Oblique projection is a type of parallel projection: it projects an image by intersecting parallel rays (projectors)
The proofs given in this article use these definitions, and thus apply to non-negative angles not greater than a right angle. For greater and negative angles , see Trigonometric functions . Other definitions, and therefore other proofs are based on the Taylor series of sine and cosine , or on the differential equation f ″ + f = 0 ...
The figure can be thought of as a "map" of how the birefringence of a mineral would vary with viewing angle away from perpendicular to the slide, where the central colour is the birefringence seen looking straight down, and the colours further from the centre equivalent to viewing the mineral at ever increasing angles from perpendicular.