enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Stratified sampling - Wikipedia

    en.wikipedia.org/wiki/Stratified_sampling

    Stratified sampling. In statistics, stratified sampling is a method of sampling from a population which can be partitioned into subpopulations. In statistical surveys, when subpopulations within an overall population vary, it could be advantageous to sample each subpopulation (stratum) independently.

  3. Stratified randomization - Wikipedia

    en.wikipedia.org/wiki/Stratified_randomization

    Graphic breakdown of stratified random sampling. In statistics, stratified randomization is a method of sampling which first stratifies the whole study population into subgroups with same attributes or characteristics, known as strata, then followed by simple random sampling from the stratified groups, where each element within the same subgroup are selected unbiasedly during any stage of the ...

  4. Stratification (clinical trials) - Wikipedia

    en.wikipedia.org/wiki/Stratification_(clinical...

    Stratification (clinical trials) Stratification of clinical trials is the partitioning of subjects and results by a factor other than the treatment given. Stratification can be used to ensure equal allocation of subgroups of participants to each experimental condition. This may be done by gender, age, or other demographic factors.

  5. Cochran–Mantel–Haenszel statistics - Wikipedia

    en.wikipedia.org/wiki/Cochran–Mantel–Haenszel...

    Cochran–Mantel–Haenszel statistics. In statistics, the Cochran–Mantel–Haenszel test (CMH) is a test used in the analysis of stratified or matched categorical data. It allows an investigator to test the association between a binary predictor or treatment and a binary outcome such as case or control status while taking into account the ...

  6. Balanced repeated replication - Wikipedia

    en.wikipedia.org/wiki/Balanced_repeated_replication

    Fay's method. Fay's method is a generalization of BRR. Instead of simply taking half-size samples, we use the full sample every time but with unequal weighting: k for units outside the half-sample and 2 − k for units inside it. (BRR is the case k = 0.) The variance estimate is then V / (1 − k) 2, where V is the estimate given by the BRR ...

  7. Randomization - Wikipedia

    en.wikipedia.org/wiki/Randomization

    Randomization is a statistical process in which a random mechanism is employed to select a sample from a population or assign subjects to different groups. [1][2][3] The process is crucial in ensuring the random allocation of experimental units or treatment protocols, thereby minimizing selection bias and enhancing the statistical validity. [4]

  8. Variance reduction - Wikipedia

    en.wikipedia.org/wiki/Variance_reduction

    In mathematics, more specifically in the theory of Monte Carlo methods, variance reduction is a procedure used to increase the precision of the estimates obtained for a given simulation or computational effort. [1] Every output random variable from the simulation is associated with a variance which limits the precision of the simulation results ...

  9. Horvitz–Thompson estimator - Wikipedia

    en.wikipedia.org/wiki/Horvitz–Thompson_estimator

    In statistics, the Horvitz–Thompson estimator, named after Daniel G. Horvitz and Donovan J. Thompson, [1] is a method for estimating the total [2] and mean of a pseudo-population in a stratified sample by applying inverse probability weighting to account for the difference in the sampling distribution between the collected data and the a target population.