enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Factorization of polynomials over finite fields - Wikipedia

    en.wikipedia.org/wiki/Factorization_of...

    Irreducible polynomials over finite fields are also useful for pseudorandom number generators using feedback shift registers and discrete logarithm over F 2 n. The number of irreducible monic polynomials of degree n over F q is the number of aperiodic necklaces, given by Moreau's necklace-counting function M q (n). The closely related necklace ...

  3. Primitive polynomial (field theory) - Wikipedia

    en.wikipedia.org/wiki/Primitive_polynomial...

    Over GF(3) the polynomial x 2 + 1 is irreducible but not primitive because it divides x 4 − 1: its roots generate a cyclic group of order 4, while the multiplicative group of GF(3 2) is a cyclic group of order 8. The polynomial x 2 + 2x + 2, on the other hand, is primitive. Denote one of its roots by α.

  4. Gauss's lemma (polynomials) - Wikipedia

    en.wikipedia.org/wiki/Gauss's_lemma_(polynomials)

    (A polynomial with integer coefficients is primitive if it has 1 as a greatest common divisor of its coefficients. [note 2]) A corollary of Gauss's lemma, sometimes also called Gauss's lemma, is that a primitive polynomial is irreducible over the integers if and only if it is irreducible over the rational numbers. More generally, a primitive ...

  5. Finite field - Wikipedia

    en.wikipedia.org/wiki/Finite_field

    The number N(q, n) of monic irreducible polynomials of degree n over GF(q) is given by [4] (,) = /, where μ is the Möbius function. This formula is an immediate consequence of the property of X q − X above and the Möbius inversion formula.

  6. Rabin fingerprint - Wikipedia

    en.wikipedia.org/wiki/Rabin_fingerprint

    Given an n-bit message m 0,...,m n-1, we view it as a polynomial of degree n-1 over the finite field GF(2). = + + … +We then pick a random irreducible polynomial ⁠ ⁠ of degree k over GF(2), and we define the fingerprint of the message m to be the remainder () after division of () by () over GF(2) which can be viewed as a polynomial of degree k − 1 or as a k-bit number.

  7. Irreducibility (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Irreducibility_(mathematics)

    Irreducibility (mathematics) In mathematics, the concept of irreducibility is used in several ways. A polynomial over a field may be an irreducible polynomial if it cannot be factored over that field. In abstract algebra, irreducible can be an abbreviation for irreducible element of an integral domain; for example an irreducible polynomial.

  8. Tschirnhaus transformation - Wikipedia

    en.wikipedia.org/wiki/Tschirnhaus_transformation

    Definition. For a generic degree reducible monic polynomial equation of the form , where and are polynomials and does not vanish at , the Tschirnhaus transformation is the function: Such that the new equation in , , has certain special properties, most commonly such that some coefficients, , are identically zero. [2][3]

  9. Perfect field - Wikipedia

    en.wikipedia.org/wiki/Perfect_field

    Perfect field. In algebra, a field k is perfect if any one of the following equivalent conditions holds: Every irreducible polynomial over k has no multiple roots in any field extension F/k. Every irreducible polynomial over k has non-zero formal derivative. Every irreducible polynomial over k is separable.