Search results
Results from the WOW.Com Content Network
Ptolemy's theorem states that the sum of the products of the lengths of opposite sides is equal to the product of the lengths of the diagonals. When those side-lengths are expressed in terms of the sin and cos values shown in the figure above, this yields the angle sum trigonometric identity for sine: sin(α + β) = sin α cos β + cos α sin β.
In mathematics, the trigonometric functions (also called circular functions, angle functions or goniometric functions) [1] are real functions which relate an angle of a right-angled triangle to ratios of two side lengths. They are widely used in all sciences that are related to geometry, such as navigation, solid mechanics, celestial mechanics ...
Pythagorean identities. Identity 1: The following two results follow from this and the ratio identities. To obtain the first, divide both sides of by ; for the second, divide by . Similarly. Identity 2: The following accounts for all three reciprocal functions. Proof 2: Refer to the triangle diagram above.
e. In mathematics, the inverse trigonometric functions (occasionally also called antitrigonometric, [1] cyclometric, [2] or arcus functions [3]) are the inverse functions of the trigonometric functions, under suitably restricted domains. Specifically, they are the inverses of the sine, cosine, tangent, cotangent, secant, and cosecant functions ...
Small-angle approximation. Simplification of the basic trigonometric functions. Approximately equal behavior of some (trigonometric) functions for x → 0. The small-angle approximations can be used to approximate the values of the main trigonometric functions, provided that the angle in question is small and is measured in radians ...
v. t. e. Trigonometry (from Ancient Greek τρίγωνον (trígōnon) 'triangle' and μέτρον (métron) 'measure') [1] is a branch of mathematics concerned with relationships between angles and side lengths of triangles. In particular, the trigonometric functions relate the angles of a right triangle with ratios of its side lengths.
The Pythagorean trigonometric identity, also called simply the Pythagorean identity, is an identity expressing the Pythagorean theorem in terms of trigonometric functions. Along with the sum-of-angles formulae, it is one of the basic relations between the sine and cosine functions. The identity is. 1. {\displaystyle \sin ^ {2}\theta +\cos ^ {2 ...
Cos-1, one of two commonly used COS cell lines. cos x −1 = cos (x)−1 = − (1−cos (x)) = −ver (x) or negative versine of x, the additive inverse (or negation) of an old trigonometric function. cos −1y = cos −1 (y), sometimes interpreted as arccos (y) or arccosine of y, the compositional inverse of the trigonometric function cosine ...