Search results
Results from the WOW.Com Content Network
The broken bar does not appear to have any clearly identified uses distinct from those of the vertical bar. [15] In non-computing use — for example in mathematics, physics and general typography — the broken bar is not an acceptable substitute for the vertical bar.
The following table lists many specialized symbols commonly used in modern mathematics, ordered by their introduction date. The table can also be ordered alphabetically by clicking on the relevant header title.
For most symbols, the entry name is the corresponding Unicode symbol. So, for searching the entry of a symbol, it suffices to type or copy the Unicode symbol into the search textbox. Similarly, when possible, the entry name of a symbol is also an anchor, which allows linking easily from another Wikipedia article. When an entry name contains ...
The following table lists many common symbols, together with their name, how they should be read out loud, and the related field of mathematics. Additionally, the subsequent columns contains an informal explanation, a short example, the Unicode location, the name for use in HTML documents, [1] and the LaTeX symbol.
the symbol ϖ, a graphic variant of π, is sometimes construed as omega with a bar over it; see π; the unsaturated fats nomenclature in biochemistry (e.g. ω−3 fatty acids) the first uncountable ordinal (also written as Ω) the clique number (number of vertices in a maximum clique) of a graph in graph theory [85]
The triple bar or tribar, ≡, is a symbol with multiple, context-dependent meanings indicating equivalence of two different things. Its main uses are in mathematics and logic. Its main uses are in mathematics and logic.
Depending on authors, the term "maps" or the term "functions" may be reserved for specific kinds of functions or morphisms (e.g., function as an analytic term and map as a general term). mathematics See mathematics. multivalued A "multivalued function” from a set A to a set B is a function from A to the subsets of B.
def – define or definition. deg – degree of a polynomial, or other recursively-defined objects such as well-formed formulas. (Also written as ∂.) del – del, a differential operator. (Also written as.) det – determinant of a matrix or linear transformation. DFT – discrete Fourier transform.