enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Green's theorem - Wikipedia

    en.wikipedia.org/wiki/Green's_theorem

    In plane geometry, and in particular, area surveying, Green's theorem can be used to determine the area and centroid of plane figures solely by integrating over the perimeter. Proof when D is a simple region

  3. Green's identities - Wikipedia

    en.wikipedia.org/wiki/Green's_identities

    In mathematics, Green's identities are a set of three identities in vector calculus relating the bulk with the boundary of a region on which differential operators act. They are named after the mathematician George Green , who discovered Green's theorem .

  4. List of theorems - Wikipedia

    en.wikipedia.org/wiki/List_of_theorems

    Green–Tao theorem (number theory) Green's theorem (vector calculus) Grinberg's theorem (graph theory) Gromov's compactness theorem (Riemannian geometry) Gromov's compactness theorem (symplectic topology) Gromov's theorem on groups of polynomial growth (geometric group theory) Gromov–Ruh theorem (differential geometry) Gross–Zagier theorem ...

  5. Exterior derivative - Wikipedia

    en.wikipedia.org/wiki/Exterior_derivative

    The theorem of de Rham shows that this map is actually an isomorphism, a far-reaching generalization of the Poincaré lemma. As suggested by the generalized Stokes' theorem, the exterior derivative is the "dual" of the boundary map on singular simplices.

  6. George Green (mathematician) - Wikipedia

    en.wikipedia.org/wiki/George_Green_(mathematician)

    The title page to Green's original essay on what is now known as Green's theorem. In 1828, Green published An Essay on the Application of Mathematical Analysis to the Theories of Electricity and Magnetism, which is the essay he is most famous for today. It was published privately at the author's expense, because he thought it would be ...

  7. Area of a circle - Wikipedia

    en.wikipedia.org/wiki/Area_of_a_circle

    The green line shows the case n = 6. Following Satō Moshun (Smith & Mikami 1914, pp. 130–132), Nicholas of Cusa [4] and Leonardo da Vinci (Beckmann 1976, p. 19), we can use inscribed regular polygons in a different way. Suppose we inscribe a hexagon. Cut the hexagon into six triangles by splitting it from the center.

  8. Generalized Stokes theorem - Wikipedia

    en.wikipedia.org/wiki/Generalized_Stokes_theorem

    In particular, the fundamental theorem of calculus is the special case where the manifold is a line segment, Green’s theorem and Stokes' theorem are the cases of a surface in or , and the divergence theorem is the case of a volume in . [2] Hence, the theorem is sometimes referred to as the fundamental theorem of multivariate calculus.

  9. Planimeter - Wikipedia

    en.wikipedia.org/wiki/Planimeter

    The connection with Green's theorem can be understood in terms of integration in polar coordinates: in polar coordinates, area is computed by the integral (()), where the form being integrated is quadratic in r, meaning that the rate at which area changes with respect to change in angle varies quadratically with the radius.