Search results
Results from the WOW.Com Content Network
In physics, Green's theorem finds many applications. One is solving two-dimensional flow integrals, stating that the sum of fluid outflowing from a volume is equal to the total outflow summed about an enclosing area.
The title page to Green's original essay on what is now known as Green's theorem. In 1828, Green published An Essay on the Application of Mathematical Analysis to the Theories of Electricity and Magnetism, which is the essay he is most famous for today. It was published privately at the author's expense, because he thought it would be ...
Green's functions are also useful tools in solving wave equations and diffusion equations. In quantum mechanics, Green's function of the Hamiltonian is a key concept with important links to the concept of density of states. The Green's function as used in physics is usually defined with the opposite sign, instead.
Herein also his remarkable theorem in pure mathematics, since universally known as Green's theorem, and probably the most important instrument of investigation in the whole range of mathematical physics, made its appearance. We are all now able to understand, in a general way at least, the importance of Green's work, and the progress made since ...
There is also an analogous theorem in electrostatics, known as Green's reciprocity, relating the interchange of electric potential and electric charge density. Forms of the reciprocity theorems are used in many electromagnetic applications, such as analyzing electrical networks and antenna systems. [ 1 ]
In many-body theory, the term Green's function (or Green function) is sometimes used interchangeably with correlation function, but refers specifically to correlators of field operators or creation and annihilation operators. The name comes from the Green's functions used to solve inhomogeneous differential equations, to which they are loosely ...
The divergence theorem is an important result for the mathematics of physics and engineering, ... in which case the theorem is the basis for Green's identities.
Using the Green's function for the three-variable Laplace operator, one can integrate the Poisson equation in order to determine the potential function. Green's functions can be expanded in terms of the basis elements (harmonic functions) which are determined using the separable coordinate systems for the linear partial differential equation ...