Ads
related to: impossible math equation to solveassistantcat.com has been visited by 10K+ users in the past month
Search results
Results from the WOW.Com Content Network
Many mathematical problems have been stated but not yet solved. These problems come from many areas of mathematics, such as theoretical physics, computer science, algebra, analysis, combinatorics, algebraic, differential, discrete and Euclidean geometries, graph theory, group theory, model theory, number theory, set theory, Ramsey theory, dynamical systems, and partial differential equations.
The conjecture is that there is a simple way to tell whether such equations have a finite or infinite number of rational solutions. More specifically, the Millennium Prize version of the conjecture is that, if the elliptic curve E has rank r , then the L -function L ( E , s ) associated with it vanishes to order r at s = 1 .
Some math problems have been challenging us for centuries, and while brain-busters like these hard math problems may seem impossible, someone is bound to solve ’em eventually. Well, m aybe .
This meant a solution in radicals, that is, an expression involving only the coefficients of the equation, and the operations of addition, subtraction, multiplication, division, and n th root extraction. The Abel–Ruffini theorem proves that this is impossible.
Then the formula for the map is exactly the same as when the domain is the integers: an 'even' such rational is divided by 2; an 'odd' such rational is multiplied by 3 and then 1 is added. A closely related fact is that the Collatz map extends to the ring of 2-adic integers , which contains the ring of rationals with odd denominators as a subring.
A college student just solved a seemingly paradoxical math problem—and the answer came from an incredibly unlikely place. Skip to main content. 24/7 Help. For premium support please call: 800 ...
One of the widely used types of impossibility proof is proof by contradiction.In this type of proof, it is shown that if a proposition, such as a solution to a particular class of equations, is assumed to hold, then via deduction two mutually contradictory things can be shown to hold, such as a number being both even and odd or both negative and positive.
Fermat's Last Theorem considers solutions to the Fermat equation: a n + b n = c n with positive integers a, b, and c and an integer n greater than 2. There are several generalizations of the Fermat equation to more general equations that allow the exponent n to be a negative integer or rational, or to consider three different exponents.
Ads
related to: impossible math equation to solveassistantcat.com has been visited by 10K+ users in the past month