Search results
Results from the WOW.Com Content Network
Bistatic radar is a radar system comprising a transmitter and receiver that are separated by a distance comparable to the expected target distance. Conversely, a conventional radar in which the transmitter and receiver are co-located is called a monostatic radar . [ 1 ]
Bistatic radars use separated transmitters and receivers, providing indication of objects moving between the two antennas. Pages in category "Bistatic radars" The following 9 pages are in this category, out of 9 total.
Radar engineering is the design of technical aspects pertaining to the components of a radar and their ability to detect the return energy from moving scatterers — determining an object's position or obstruction in the environment.
Klein Heidelberg (KH) [2] was a passive radar system deployed by the Germans during World War II. It used the signals broadcast by the British Chain Home system as its transmitter, and a series of six stations along the western coast of continental Europe as passive receivers. In modern terminology, the system was a bistatic radar.
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Pages for logged out editors learn more
The Daryal-type radar (Russian: Дарьял) (NATO: Pechora) is a Soviet bistatic early-warning radar. It consists of two separate large active phased-array antennas separated by around 500 metres (1,640 ft) to 1.5 kilometres (4,921 ft). The transmitter array is 30 m × 40 m (98 ft × 131 ft) and the receiver is 80 m × 80 m (260 ft × 260 ft ...
A multistatic radar system. A multistatic radar system contains multiple spatially diverse monostatic radar or bistatic radar components with a shared area of coverage. An important distinction of systems based on these individual radar geometries is the added requirement for some level of data fusion to take place between component parts.
Coverage area size is the area that the system can keep under continuous surveillance from a specific orbit. Well known design principles cause a radar's maximum detection range to depend on the size of its antenna (radar aperture), the amount of power radiated from the antenna, and the effectiveness of its clutter cancellation mechanism.