enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. List of mathematical series - Wikipedia

    en.wikipedia.org/wiki/List_of_mathematical_series

    An infinite series of any rational function of can be reduced to a finite series of polygamma functions, by use of partial fraction decomposition, [8] as explained here. This fact can also be applied to finite series of rational functions, allowing the result to be computed in constant time even when the series contains a large number of terms.

  3. Empty sum - Wikipedia

    en.wikipedia.org/wiki/Empty_sum

    In mathematics, an empty sum, or nullary sum, [1] is a summation where the number of terms is zero. The natural way to extend non-empty sums [ 2 ] is to let the empty sum be the additive identity . Let a 1 {\displaystyle a_{1}} , a 2 {\displaystyle a_{2}} , a 3 {\displaystyle a_{3}} , ... be a sequence of numbers, and let

  4. Summation - Wikipedia

    en.wikipedia.org/wiki/Summation

    In mathematics, summation is the addition of a sequence of numbers, called addends or summands; the result is their sum or total.Beside numbers, other types of values can be summed as well: functions, vectors, matrices, polynomials and, in general, elements of any type of mathematical objects on which an operation denoted "+" is defined.

  5. Minkowski addition - Wikipedia

    en.wikipedia.org/wiki/Minkowski_addition

    Minkowski sums act linearly on the perimeter of two-dimensional convex bodies: the perimeter of the sum equals the sum of perimeters. Additionally, if K {\textstyle K} is (the interior of) a curve of constant width , then the Minkowski sum of K {\textstyle K} and of its 180° rotation is a disk.

  6. Series (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Series_(mathematics)

    A famous example of an application of this test is the alternating harmonic series = + = + +, which is convergent per the alternating series test (and its sum is equal to ⁡), though the series formed by taking the absolute value of each term is the ordinary harmonic series, which is divergent.

  7. Geometric series - Wikipedia

    en.wikipedia.org/wiki/Geometric_series

    For example, the series + + + is a geometric series with common ratio ⁠ ⁠, which converges to the sum of ⁠ ⁠. Each term in a geometric series is the geometric mean of the term before it and the term after it, in the same way that each term of an arithmetic series is the arithmetic mean of its neighbors.

  8. Summation by parts - Wikipedia

    en.wikipedia.org/wiki/Summation_by_parts

    It may be used to prove Nicomachus's theorem that the sum of the first cubes equals the square of the sum of the first positive integers. [2] Summation by parts is frequently used to prove Abel's theorem and Dirichlet's test.

  9. Arithmetic progression - Wikipedia

    en.wikipedia.org/wiki/Arithmetic_progression

    For example, consider the sum: 2 + 5 + 8 + 11 + 14 = 40 {\displaystyle 2+5+8+11+14=40} This sum can be found quickly by taking the number n of terms being added (here 5), multiplying by the sum of the first and last number in the progression (here 2 + 14 = 16), and dividing by 2: