enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Richard S. Sutton - Wikipedia

    en.wikipedia.org/wiki/Richard_S._Sutton

    He led the institution's Reinforcement Learning and Artificial Intelligence Laboratory until 2018. [ 6 ] [ 3 ] While retaining his professorship, Sutton joined Deepmind in June 2017 as a distinguished research scientist and co-founder of its Edmonton office.

  3. Andrew Ng - Wikipedia

    en.wikipedia.org/wiki/Andrew_Ng

    His machine learning course CS229 at Stanford is the most popular course offered on campus with over 1,000 students enrolling some years. [ 23 ] [ 24 ] As of 2020, three of most popular courses on Coursera are Ng's: Machine Learning (#1), AI for Everyone (#5), Neural Networks and Deep Learning (#6).

  4. Reinforcement learning - Wikipedia

    en.wikipedia.org/wiki/Reinforcement_learning

    Reinforcement learning (RL) is an interdisciplinary area of machine learning and optimal control concerned with how an intelligent agent should take actions in a dynamic environment in order to maximize a reward signal. Reinforcement learning is one of the three basic machine learning paradigms, alongside supervised learning and unsupervised ...

  5. Reinforcement learning from human feedback - Wikipedia

    en.wikipedia.org/wiki/Reinforcement_learning...

    In machine learning, reinforcement learning from human feedback (RLHF) is a technique to align an intelligent agent with human preferences. It involves training a reward model to represent preferences, which can then be used to train other models through reinforcement learning .

  6. Multi-agent reinforcement learning - Wikipedia

    en.wikipedia.org/wiki/Multi-agent_reinforcement...

    Multi-agent reinforcement learning (MARL) is a sub-field of reinforcement learning. It focuses on studying the behavior of multiple learning agents that coexist in a shared environment. [ 1 ] Each agent is motivated by its own rewards, and does actions to advance its own interests; in some environments these interests are opposed to the ...

  7. Online machine learning - Wikipedia

    en.wikipedia.org/wiki/Online_machine_learning

    Online learning is a common technique used in areas of machine learning where it is computationally infeasible to train over the entire dataset, requiring the need of out-of-core algorithms. It is also used in situations where it is necessary for the algorithm to dynamically adapt to new patterns in the data, or when the data itself is ...

  8. Self-regulated learning - Wikipedia

    en.wikipedia.org/wiki/Self-regulated_learning

    Self-regulation is an important construct in student success within an environment that allows learner choice, such as online courses. Within the remained time of explanation, there will be different types of self-regulations such as the focus is the differences between first- and second-generation college students' ability to self-regulate their online learning.

  9. Temporal difference learning - Wikipedia

    en.wikipedia.org/wiki/Temporal_difference_learning

    Temporal difference (TD) learning refers to a class of model-free reinforcement learning methods which learn by bootstrapping from the current estimate of the value function. These methods sample from the environment, like Monte Carlo methods , and perform updates based on current estimates, like dynamic programming methods.