Search results
Results from the WOW.Com Content Network
Arthur Paul Mattuck (June 11, 1930 [1] – October 8, 2021 [1] [2]) was an emeritus professor of mathematics at the Massachusetts Institute of Technology. [3] He may be best known for his 1998 book, Introduction to Analysis (ISBN 013-0-81-1327) and his differential equations video lectures featured on MIT's OpenCourseWare.
This page will attempt to list examples in mathematics. To qualify for inclusion, an article should be about a mathematical object with a fair amount of concreteness. Usually a definition of an abstract concept, a theorem, or a proof would not be an "example" as the term should be understood here (an elegant proof of an isolated but particularly striking fact, as opposed to a proof of a ...
Almgren–Pitts min-max theory; Approximation theory; Arakelov theory; Asymptotic theory; Automata theory; Bass–Serre theory; Bifurcation theory; Braid theory
The coefficients are usually taken to be integral or rational. We define the cohomology class of an algebraic cycle to be the sum of the cohomology classes of its components. This is an example of the cycle class map of de Rham cohomology, see Weil cohomology. For example, the cohomology class of the above cycle would be
For example, the constant π may be defined as the ratio of the length of a circle's circumference to its diameter. The following list includes a decimal expansion and set containing each number, ordered by year of discovery. The column headings may be clicked to sort the table alphabetically, by decimal value, or by set.
Physicist Richard D. Mattuck identified the many-body problem in quantum physics with the question at hand. The many-body problem has attracted attention ever since the philosophers of old speculated over the question of how many angels could dance on the head of a pin.
For example, some unicellular organisms have genomes much larger than that of humans. Cole's paradox: Even a tiny fecundity advantage of one additional offspring would favor the evolution of semelparity. Gray's paradox: Despite their relatively small muscle mass, dolphins can swim at high speeds and obtain large accelerations.
In mathematics, some functions or groups of functions are important enough to deserve their own names. This is a listing of articles which explain some of these functions in more detail. This is a listing of articles which explain some of these functions in more detail.