enow.com Web Search

  1. Ad

    related to: sets models and proofs

Search results

  1. Results from the WOW.Com Content Network
  2. Set theory - Wikipedia

    en.wikipedia.org/wiki/Set_theory

    Set theory is the branch of mathematical logic that studies sets, which can be informally described as collections of objects.Although objects of any kind can be collected into a set, set theory – as a branch of mathematics – is mostly concerned with those that are relevant to mathematics as a whole.

  3. Category of sets - Wikipedia

    en.wikipedia.org/wiki/Category_of_sets

    Every set is a projective object in Set (assuming the axiom of choice). The finitely presentable objects in Set are the finite sets. Since every set is a direct limit of its finite subsets, the category Set is a locally finitely presentable category. If C is an arbitrary category, the contravariant functors from C to Set are often an important ...

  4. List of set identities and relations - Wikipedia

    en.wikipedia.org/wiki/List_of_set_identities_and...

    This article lists mathematical properties and laws of sets, involving the set-theoretic operations of union, intersection, and complementation and the relations of set equality and set inclusion. It also provides systematic procedures for evaluating expressions, and performing calculations, involving these operations and relations.

  5. Algebra of sets - Wikipedia

    en.wikipedia.org/wiki/Algebra_of_sets

    The algebra of sets is the set-theoretic analogue of the algebra of numbers. Just as arithmetic addition and multiplication are associative and commutative, so are set union and intersection; just as the arithmetic relation "less than or equal" is reflexive, antisymmetric and transitive, so is the set relation of "subset".

  6. Set (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Set_(mathematics)

    A set of polygons in an Euler diagram This set equals the one depicted above since both have the very same elements.. In mathematics, a set is a collection of different [1] things; [2] [3] [4] these things are called elements or members of the set and are typically mathematical objects of any kind: numbers, symbols, points in space, lines, other geometrical shapes, variables, or even other ...

  7. Zermelo–Fraenkel set theory - Wikipedia

    en.wikipedia.org/wiki/Zermelo–Fraenkel_set_theory

    Because there are non-well-founded models that satisfy each axiom of ZFC except the axiom of regularity, that axiom is independent of the other ZFC axioms. If consistent, ZFC cannot prove the existence of the inaccessible cardinals that category theory requires. Huge sets of this nature are possible if ZF is augmented with Tarski's axiom. [14]

  8. Set-theoretic definition of natural numbers - Wikipedia

    en.wikipedia.org/wiki/Set-theoretic_definition...

    The set N of natural numbers is defined in this system as the smallest set containing 0 and closed under the successor function S defined by S(n) = n ∪ {n}. The structure N, 0, S is a model of the Peano axioms (Goldrei 1996). The existence of the set N is equivalent to the axiom of infinity in ZF set theory.

  9. Simple theorems in the algebra of sets - Wikipedia

    en.wikipedia.org/wiki/Simple_theorems_in_the...

    The algebra of sets is an interpretation or model of Boolean algebra, with union, intersection, set complement, U, and {} interpreting Boolean sum, product, complement, 1, and 0, respectively. The properties below are stated without proof, but can be derived from a small number of properties taken as axioms.

  1. Ad

    related to: sets models and proofs