Search results
Results from the WOW.Com Content Network
MacMahon Master theorem (enumerative combinatorics) Maharam's theorem (measure theory) Mahler's compactness theorem (geometry of numbers) Mahler's theorem (p-adic analysis) Maier's theorem (analytic number theory) Malgrange preparation theorem (singularity theory) Malgrange–Ehrenpreis theorem (differential equations)
Sections 4.3 (The master method) and 4.4 (Proof of the master theorem), pp. 73–90. Michael T. Goodrich and Roberto Tamassia. Algorithm Design: Foundation, Analysis, and Internet Examples. Wiley, 2002. ISBN 0-471-38365-1. The master theorem (including the version of Case 2 included here, which is stronger than the one from CLRS) is on pp. 268 ...
Many mathematical problems have been stated but not yet solved. These problems come from many areas of mathematics, such as theoretical physics, computer science, algebra, analysis, combinatorics, algebraic, differential, discrete and Euclidean geometries, graph theory, group theory, model theory, number theory, set theory, Ramsey theory, dynamical systems, and partial differential equations.
Cayley–Hamilton theorem. The theorem was first proved in the easy special case of 2×2 matrices by Cayley, and later for the case of 4×4 matrices by Hamilton. But it was only proved in general by Frobenius in 1878. [7] Hölder's inequality. This inequality was first established by Leonard James Rogers, and published in 1888.
In some cases, there may be more sums then variables. For example, if the integrand is a product of 3 functions of a common single variable, and each function is converted to a series expansion sum, the integrand is now a product of 3 sums, each sum corresponding to a distinct series expansion.
Absolute geometry is a geometry based on an axiom system consisting of all the axioms giving Euclidean geometry except for the parallel postulate or any of its alternatives. [69] The term was introduced by János Bolyai in 1832. [70] It is sometimes referred to as neutral geometry, [71] as it is neutral with respect to the parallel postulate.
In geometry, the incenter–excenter lemma is the theorem that the line segment between the incenter and any excenter of a triangle, or between two excenters, is the diameter of a circle (an incenter–excenter or excenter–excenter circle) also passing through two triangle vertices with its center on the circumcircle.
Casey's theorem and its converse can be used to prove a variety of statements in Euclidean geometry. For example, the shortest known proof [ 1 ] : 411 of Feuerbach's theorem uses the converse theorem.