Search results
Results from the WOW.Com Content Network
List of letters used in mathematics and science; Glossary of mathematical symbols; List of mathematical uses of Latin letters; Greek letters used in mathematics, science, and engineering; Physical constant; Physical quantity; International System of Units; ISO 31
Snap, [6] or jounce, [2] is the fourth derivative of the position vector with respect to time, or the rate of change of the jerk with respect to time. [4] Equivalently, it is the second derivative of acceleration or the third derivative of velocity, and is defined by any of the following equivalent expressions: = ȷ = = =.
where C is the circumference of an ellipse with semi-major axis a and semi-minor axis b and , are the arithmetic and geometric iterations of (,), the arithmetic-geometric mean of a and b with the initial values = and =.
List of electromagnetism equations; List of equations in classical mechanics; List of equations in gravitation; List of equations in nuclear and particle physics; List of equations in quantum mechanics; List of photonics equations; List of relativistic equations; Table of thermodynamic equations
The first table lists the fundamental quantities used in the International System of Units to define the physical dimension of physical quantities for dimensional analysis. The second table lists the derived physical quantities. Derived quantities can be expressed in terms of the base quantities.
It can be adapted to similar equations e.g. F = ma, v = fλ, E = mcΔT, V = π r 2 h and τ = rF sinθ. When a variable with an exponent or in a function is covered, the corresponding inverse is applied to the remainder, i.e. = and = .
The equations of motion describe the movement of the center of mass of a body, which remains at a constant distance from the axis of rotation. In circular motion, the distance between the body and a fixed point on its surface remains the same, i.e., the body is assumed rigid.
In physics, circulation is the line integral of a vector field around a closed curve embedded in the field. In fluid dynamics, the field is the fluid velocity field. In electrodynamics, it can be the electric or the magnetic field.