enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Bayesian learning mechanisms - Wikipedia

    en.wikipedia.org/wiki/Bayesian_learning_mechanisms

    Bayesian learning mechanisms are probabilistic causal models [1] used in computer science to research the fundamental underpinnings of machine learning, and in cognitive neuroscience, to model conceptual development. [2] [3]

  3. Bayesian inference in phylogeny - Wikipedia

    en.wikipedia.org/wiki/Bayesian_inference_in...

    Bayesian inference of phylogeny combines the information in the prior and in the data likelihood to create the so-called posterior probability of trees, which is the probability that the tree is correct given the data, the prior and the likelihood model.

  4. Bayesian experimental design - Wikipedia

    en.wikipedia.org/wiki/Bayesian_experimental_design

    Bayesian experimental design provides a general probability-theoretical framework from which other theories on experimental design can be derived. It is based on Bayesian inference to interpret the observations/data acquired during the experiment. This allows accounting for both any prior knowledge on the parameters to be determined as well as ...

  5. Bayesian inference - Wikipedia

    en.wikipedia.org/wiki/Bayesian_inference

    Bayesian inference is an important technique in statistics, and especially in mathematical statistics. Bayesian updating is particularly important in the dynamic analysis of a sequence of data. Bayesian inference has found application in a wide range of activities, including science, engineering, philosophy, medicine, sport, and law.

  6. Empirical Bayes method - Wikipedia

    en.wikipedia.org/wiki/Empirical_Bayes_method

    The resulting point estimate ⁡ is therefore like a weighted average of the sample mean ¯ and the prior mean =. This turns out to be a general feature of empirical Bayes; the point estimates for the prior (i.e. mean) will look like a weighted averages of the sample estimate and the prior estimate (likewise for estimates of the variance).

  7. Bayesian cognitive science - Wikipedia

    en.wikipedia.org/wiki/Bayesian_cognitive_science

    Bayesian cognitive science, also known as computational cognitive science, is an approach to cognitive science concerned with the rational analysis [1] of cognition through the use of Bayesian inference and cognitive modeling. The term "computational" refers to the computational level of analysis as put forth by David Marr. [2]

  8. Approximate Bayesian computation - Wikipedia

    en.wikipedia.org/wiki/Approximate_Bayesian...

    The outcome of the ABC rejection algorithm is a sample of parameter values approximately distributed according to the desired posterior distribution, and, crucially, obtained without the need to explicitly evaluate the likelihood function. Parameter estimation by approximate Bayesian computation: a conceptual overview.

  9. Data assimilation - Wikipedia

    en.wikipedia.org/wiki/Data_assimilation

    One of the common mathematical philosophical perspectives is to view data assimilation as a Bayesian estimation problem. From this perspective, the analysis step is an application of Bayes' theorem and the overall assimilation procedure is an example of recursive Bayesian estimation. However, the probabilistic analysis is usually simplified to ...