Search results
Results from the WOW.Com Content Network
In computer science, integer sorting is the algorithmic problem of sorting a collection of data values by integer keys. Algorithms designed for integer sorting may also often be applied to sorting problems in which the keys are floating point numbers, rational numbers, or text strings. [1]
In computer science, counting sort is an algorithm for sorting a collection of objects according to keys that are small positive integers; that is, it is an integer sorting algorithm. It operates by counting the number of objects that possess distinct key values, and applying prefix sum on those counts to determine the positions of each key ...
The shuffle sort [6] is a variant of bucket sort that begins by removing the first 1/8 of the n items to be sorted, sorts them recursively, and puts them in an array. This creates n/8 "buckets" to which the remaining 7/8 of the items are distributed. Each "bucket" is then sorted, and the "buckets" are concatenated into a sorted array.
package strandSort; import java.util.*; public class strandSort {static LinkedList < Integer > solList = new LinkedList < Integer > (); static int k = 0; /** * This is a recursive Strand Sort method. It takes in a linked list of * integers as its parameter. It first checks the base case to see if the * linked list is empty.
Both digital and analog hardware implementations of bead sort can achieve a sorting time of O(n); however, the implementation of this algorithm tends to be significantly slower in software and can only be used to sort lists of positive integers. Also, it would seem that even in the best case, the algorithm requires O(n 2) space.
When an enumeration is used in an ordered list context, we impose some sort of ordering structure requirement on the index set. While we can make the requirements on the ordering quite lax in order to allow for great generality, the most natural and common prerequisite is that the index set be well-ordered. According to this characterization ...
Stooge sort the initial 2/3 of the list; Stooge sort the final 2/3 of the list; Stooge sort the initial 2/3 of the list again; It is important to get the integer sort size used in the recursive calls by rounding the 2/3 upwards, e.g. rounding 2/3 of 5 should give 4 rather than 3, as otherwise the sort can fail on certain data.
If the sort key values are totally ordered, the sort key defines a weak order of the items: items with the same sort key are equivalent with respect to sorting. See also stable sorting. If different items have different sort key values then this defines a unique order of the items. Workers sorting parcels in a postal facility