enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Quaternion group - Wikipedia

    en.wikipedia.org/wiki/Quaternion_group

    The quaternion group has the unusual property of being Hamiltonian: Q 8 is non-abelian, but every subgroup is normal. [4] Every Hamiltonian group contains a copy of Q 8. [5] The quaternion group Q 8 and the dihedral group D 4 are the two smallest examples of a nilpotent non-abelian group.

  3. Quaternion - Wikipedia

    en.wikipedia.org/wiki/Quaternion

    A quaternion of the form a + 0 i + 0 j + 0 k, where a is a real number, is called scalar, and a quaternion of the form 0 + b i + c j + d k, where b, c, and d are real numbers, and at least one of b, c, or d is nonzero, is called a vector quaternion.

  4. Quaternionic analysis - Wikipedia

    en.wikipedia.org/wiki/Quaternionic_analysis

    Such functions can be called functions of a quaternion variable just as functions of a real variable or a complex variable are called. As with complex and real analysis , it is possible to study the concepts of analyticity , holomorphy , harmonicity and conformality in the context of quaternions.

  5. Quaternions and spatial rotation - Wikipedia

    en.wikipedia.org/wiki/Quaternions_and_spatial...

    3D visualization of a sphere and a rotation about an Euler axis (^) by an angle of In 3-dimensional space, according to Euler's rotation theorem, any rotation or sequence of rotations of a rigid body or coordinate system about a fixed point is equivalent to a single rotation by a given angle about a fixed axis (called the Euler axis) that runs through the fixed point. [6]

  6. Euler's four-square identity - Wikipedia

    en.wikipedia.org/wiki/Euler's_four-square_identity

    Comment: The proof of Euler's four-square identity is by simple algebraic evaluation. Quaternions derive from the four-square identity, which can be written as the product of two inner products of 4-dimensional vectors, yielding again an inner product of 4-dimensional vectors: (a·a)(b·b) = (a×b)·(a×b).

  7. Category:Quaternions - Wikipedia

    en.wikipedia.org/wiki/Category:Quaternions

    The quaternions are a non-commutative extension of the complex numbers which have numerous applications in mathematics, physics, and computer graphics The main article for this category is Quaternion .

  8. List of set identities and relations - Wikipedia

    en.wikipedia.org/wiki/List_of_set_identities_and...

    The great variety and (relative) complexity of formulas involving set subtraction (compared to those without it) is in part due to the fact that unlike ,, and , set subtraction is neither associative nor commutative and it also is not left distributive over ,, , or even over itself.

  9. Versor - Wikipedia

    en.wikipedia.org/wiki/Versor

    In mathematics, a versor is a quaternion of norm one (a unit quaternion).Each versor has the form = ⁡ = ⁡ + ⁡, =, [,], where the r 2 = −1 condition means that r is a unit-length vector quaternion (or that the first component of r is zero, and the last three components of r are a unit vector in 3 dimensions).