enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Ranking SVM - Wikipedia

    en.wikipedia.org/wiki/Ranking_SVM

    In machine learning, a ranking SVM is a variant of the support vector machine algorithm, which is used to solve certain ranking problems (via learning to rank). The ranking SVM algorithm was published by Thorsten Joachims in 2002. [1] The original purpose of the algorithm was to improve the performance of an internet search engine.

  3. Potentially all pairwise rankings of all possible alternatives

    en.wikipedia.org/wiki/Potentially_all_pairwise...

    Because the three pairwise rankings above are consistent – and all n (n−1)/2 = 28 pairwise rankings (n = 8) for this simple value model are known – a complete overall ranking of all eight possible alternatives is defined (1st to 8th): 222, 122, 221, 212, 121, 112, 211, 111.

  4. Ranking - Wikipedia

    en.wikipedia.org/wiki/Ranking

    For v = 1.0, the fractional rank is the average of the ordinal ranks: (1 + 2) / 2 = 1.5. In a similar manner, for v = 5.0, the fractional rank is (7 + 8 + 9) / 3 = 8.0. Thus the fractional ranks are: 1.5, 1.5, 3.0, 4.5, 4.5, 6.0, 8.0, 8.0, 8.0 This method is called "Mean" by IBM SPSS [4] and "average" by the R programming language [5] in their ...

  5. Comparison of statistical packages - Wikipedia

    en.wikipedia.org/wiki/Comparison_of_statistical...

    1.6.2 (2 July 2022 ()) [3] Yes GNU GPL: CLI, GUI: C Perl (by PSPP-Perl [4]) R: R Foundation 4.4.1 (14 June 2024 ()) [5] Yes GNU GPL: CLI, GUI [6] C, Fortran, R [7] R language, Python (by RPy), Perl (by Statistics::R module) R++: Zebrys 1.6.15 (8 December 2023 ()) [8] No Proprietary: CLI, GUI: C++, Qt R language: RKWard: RKWard community

  6. Quantile normalization - Wikipedia

    en.wikipedia.org/wiki/Quantile_normalization

    In the case of column 2, they represent ranks iii and iv. So we assign the two tied rank iii entries the average of rank iii and rank iv ((4.67 + 5.67)/2 = 5.17). And so we arrive at the following set of normalized values:

  7. Learning to rank - Wikipedia

    en.wikipedia.org/wiki/Learning_to_rank

    Learning to rank [1] or machine-learned ranking (MLR) is the application of machine learning, typically supervised, semi-supervised or reinforcement learning, in the construction of ranking models for information retrieval systems. [2] Training data may, for example, consist of lists of items with some partial order specified between items in ...

  8. Ranking (statistics) - Wikipedia

    en.wikipedia.org/wiki/Ranking_(statistics)

    In statistics, ranking is the data transformation in which numerical or ordinal values are replaced by their rank when the data are sorted.. For example, if the numerical data 3.4, 5.1, 2.6, 7.3 are observed, the ranks of these data items would be 2, 3, 1 and 4 respectively.

  9. Evaluation measures (information retrieval) - Wikipedia

    en.wikipedia.org/wiki/Evaluation_measures...

    The nDCG values for all queries can be averaged to obtain a measure of the average performance of a ranking algorithm. Note that in a perfect ranking algorithm, the will be the same as the producing an nDCG of 1.0. All nDCG calculations are then relative values on the interval 0.0 to 1.0 and so are cross-query comparable.