enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Weibull distribution - Wikipedia

    en.wikipedia.org/wiki/Weibull_distribution

    [10] [11] The shape parameter k is the same as in the standard case, while the scale parameter λ is replaced with a rate parameter β = 1/λ. Then, for x ≥ 0, the probability density function is (;,) = () the cumulative distribution function is

  3. Log probability - Wikipedia

    en.wikipedia.org/wiki/Log_probability

    In probability theory and computer science, a log probability is simply a logarithm of a probability. [1] The use of log probabilities means representing probabilities on a logarithmic scale ( − ∞ , 0 ] {\displaystyle (-\infty ,0]} , instead of the standard [ 0 , 1 ] {\displaystyle [0,1]} unit interval .

  4. Scale parameter - Wikipedia

    en.wikipedia.org/wiki/Scale_parameter

    In probability theory and statistics, a scale parameter is a special kind of numerical parameter of a parametric family of probability distributions. The larger the scale parameter, the more spread out the distribution.

  5. 68–95–99.7 rule - Wikipedia

    en.wikipedia.org/wiki/68–95–99.7_rule

    Diagram showing the cumulative distribution function for the normal distribution with mean (μ) 0 and variance (σ 2) 1. These numerical values "68%, 95%, 99.7%" come from the cumulative distribution function of the normal distribution.

  6. Probability - Wikipedia

    en.wikipedia.org/wiki/Probability

    Probability is the branch of mathematics and statistics concerning events and numerical descriptions of how likely they are to occur. The probability of an event is a number between 0 and 1; the larger the probability, the more likely an event is to occur. [note 1] [1] [2] This number is often expressed as a percentage (%), ranging from 0% to ...

  7. Probability distribution - Wikipedia

    en.wikipedia.org/wiki/Probability_distribution

    A discrete probability distribution is the probability distribution of a random variable that can take on only a countable number of values [15] (almost surely) [16] which means that the probability of any event can be expressed as a (finite or countably infinite) sum: = (=), where is a countable set with () =.

  8. Logistic regression - Wikipedia

    en.wikipedia.org/wiki/Logistic_regression

    More abstractly, the logistic function is the natural parameter for the Bernoulli distribution, and in this sense is the "simplest" way to convert a real number to a probability. In particular, it maximizes entropy (minimizes added information), and in this sense makes the fewest assumptions of the data being modeled; see § Maximum entropy .

  9. Orders of magnitude (numbers) - Wikipedia

    en.wikipedia.org/wiki/Orders_of_magnitude_(numbers)

    1/52! chance of a specific shuffle Mathematics: The chances of shuffling a standard 52-card deck in any specific order is around 1.24 × 10 −68 (or exactly 1 ⁄ 52!) [4] Computing: The number 1.4 × 10 −45 is approximately equal to the smallest positive non-zero value that can be represented by a single-precision IEEE floating-point value.