Search results
Results from the WOW.Com Content Network
[10] [11] The shape parameter k is the same as in the standard case, while the scale parameter λ is replaced with a rate parameter β = 1/λ. Then, for x ≥ 0, the probability density function is (;,) = () the cumulative distribution function is
In probability theory and computer science, a log probability is simply a logarithm of a probability. [1] The use of log probabilities means representing probabilities on a logarithmic scale ( − ∞ , 0 ] {\displaystyle (-\infty ,0]} , instead of the standard [ 0 , 1 ] {\displaystyle [0,1]} unit interval .
In probability theory and statistics, a scale parameter is a special kind of numerical parameter of a parametric family of probability distributions. The larger the scale parameter, the more spread out the distribution.
Diagram showing the cumulative distribution function for the normal distribution with mean (μ) 0 and variance (σ 2) 1. These numerical values "68%, 95%, 99.7%" come from the cumulative distribution function of the normal distribution.
Probability is the branch of mathematics and statistics concerning events and numerical descriptions of how likely they are to occur. The probability of an event is a number between 0 and 1; the larger the probability, the more likely an event is to occur. [note 1] [1] [2] This number is often expressed as a percentage (%), ranging from 0% to ...
A discrete probability distribution is the probability distribution of a random variable that can take on only a countable number of values [15] (almost surely) [16] which means that the probability of any event can be expressed as a (finite or countably infinite) sum: = (=), where is a countable set with () =.
More abstractly, the logistic function is the natural parameter for the Bernoulli distribution, and in this sense is the "simplest" way to convert a real number to a probability. In particular, it maximizes entropy (minimizes added information), and in this sense makes the fewest assumptions of the data being modeled; see § Maximum entropy .
1/52! chance of a specific shuffle Mathematics: The chances of shuffling a standard 52-card deck in any specific order is around 1.24 × 10 −68 (or exactly 1 ⁄ 52!) [4] Computing: The number 1.4 × 10 −45 is approximately equal to the smallest positive non-zero value that can be represented by a single-precision IEEE floating-point value.