Search results
Results from the WOW.Com Content Network
Landauer's principle is a physical principle pertaining to a lower theoretical limit of energy consumption of computation.It holds that an irreversible change in information stored in a computer, such as merging two computational paths, dissipates a minimum amount of heat to its surroundings. [1]
Although convective heat transfer can be derived analytically through dimensional analysis, exact analysis of the boundary layer, approximate integral analysis of the boundary layer and analogies between energy and momentum transfer, these analytic approaches may not offer practical solutions to all problems when there are no mathematical models applicable.
These first Heisler–Gröber charts were based upon the first term of the exact Fourier series solution for an infinite plane wall: (,) = = [ + ], [1]where T i is the initial uniform temperature of the slab, T ∞ is the constant environmental temperature imposed at the boundary, x is the location in the plane wall, λ is the root of λ * tan λ = Bi, and α is thermal diffusivity.
Understanding this is perhaps a "thought experiment" in chemical kinetics, but actual examples exist. A gas-phase reaction at constant temperature and pressure which results in an increase in the number of molecules will lead to an increase in volume. Inside a cylinder closed with a piston, it can proceed only by doing work on the piston.
Thermal conduction is the diffusion of thermal energy (heat) within one material or between materials in contact. The higher temperature object has molecules with more kinetic energy; collisions between molecules distributes this kinetic energy until an object has the same kinetic energy throughout.
Together, these two components form a thermal RC circuit with an associated time constant given by the product of R and C. This quantity can be used to calculate the dynamic heat dissipation capability of a device, in an analogous way to the electrical case. [4]
The constant of proportionality is the heat transfer coefficient. [7] The law applies when the coefficient is independent, or relatively independent, of the temperature difference between object and environment. In classical natural convective heat transfer, the heat transfer coefficient is dependent on the temperature.
In thermodynamics, dissipation is the result of an irreversible process that affects a thermodynamic system. In a dissipative process, energy ( internal , bulk flow kinetic , or system potential ) transforms from an initial form to a final form, where the capacity of the final form to do thermodynamic work is less than that of the initial form.