Search results
Results from the WOW.Com Content Network
The number of these irreducibles is equal to the number of conjugacy classes of G. The above fact can be explained by character theory. Recall that the character of the regular representation χ(g) is the number of fixed points of g acting on the regular representation V. It means the number of fixed points χ(g) is zero when g is not id and |G ...
The condensation of a directed graph G is a directed acyclic graph with one vertex for each strongly connected component of G, and an edge connecting pairs of components that contain the two endpoints of at least one edge in G. cone A graph that contains a universal vertex. connect Cause to be connected. connected
Following the terminology in much of the strongly regular graph literature, the larger eigenvalue is called r with multiplicity f and the smaller one is called s with multiplicity g. Since the sum of all the eigenvalues is the trace of the adjacency matrix, which is zero in this case, the respective multiplicities f and g can be calculated:
The fusion of ideas from mathematics with those from chemistry began what has become part of the standard terminology of graph theory. In particular, the term "graph" was introduced by Sylvester in a paper published in 1878 in Nature, where he draws an analogy between "quantic invariants" and "co-variants" of algebra and molecular diagrams: [25]
One way to do this is to say that two sets "have the same number of elements", if and only if all the elements of one set can be paired with the elements of the other, in such a way that each element is paired with exactly one element. Accordingly, one can define two sets to "have the same number of elements"—if there is a bijection between them.
Newton's laws are often stated in terms of point or particle masses, that is, bodies whose volume is negligible. This is a reasonable approximation for real bodies when the motion of internal parts can be neglected, and when the separation between bodies is much larger than the size of each.
1. Inner semidirect product: if N and H are subgroups of a group G, such that N is a normal subgroup of G, then = and = mean that G is the semidirect product of N and H, that is, that every element of G can be uniquely decomposed as the product of an element of N and an element of H.
Given a function: from a set X (the domain) to a set Y (the codomain), the graph of the function is the set [4] = {(, ()):}, which is a subset of the Cartesian product.In the definition of a function in terms of set theory, it is common to identify a function with its graph, although, formally, a function is formed by the triple consisting of its domain, its codomain and its graph.