enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Markovnikov's rule - Wikipedia

    en.wikipedia.org/wiki/Markovnikov's_rule

    This product distribution can be rationalized by assuming that loss of the hydroxy group in 1 gives the tertiary carbocation A, which rearranges to the seemingly less stable secondary carbocation B. Chlorine can approach this center from two faces leading to the observed mixture of isomers.

  3. Tertiary carbon - Wikipedia

    en.wikipedia.org/wiki/Tertiary_carbon

    The transition states for SN1 reactions that showcases tertiary carbons have the lowest transition state energy level in SN1 reactions. A tertiary carbocation will maximize the rate of reaction for an SN1 reaction by producing a stable carbocation. This happens because the rate determining step of a SN1 reaction is the formation of the carbocation.

  4. 1,2-rearrangement - Wikipedia

    en.wikipedia.org/wiki/1,2-rearrangement

    The driving force for the actual migration of a substituent in step two of the rearrangement is the formation of a more stable intermediate. For instance a tertiary carbocation is more stable than a secondary carbocation and therefore the S N 1 reaction of neopentyl bromide with ethanol yields tert-pentyl ethyl ether.

  5. SN1 reaction - Wikipedia

    en.wikipedia.org/wiki/SN1_reaction

    The reaction involves a carbocation intermediate and is commonly seen in reactions of secondary or tertiary alkyl halides under strongly basic conditions or, under strongly acidic conditions, with secondary or tertiary alcohols. With primary and secondary alkyl halides, the alternative S N 2 reaction occurs.

  6. Nucleophilic substitution - Wikipedia

    en.wikipedia.org/wiki/Nucleophilic_substitution

    In this case, tertiary carbocation will react faster than a secondary which will react much faster than a primary. It is also due to this carbocation intermediate that the product does not have to have inversion. The nucleophile can attack from the top or the bottom and therefore create a racemic product.

  7. Hydrohalogenation - Wikipedia

    en.wikipedia.org/wiki/Hydrohalogenation

    This regioselectivity is rationalized by the resonance stabilization of a neighboring carbocation by a lone pair on the initially installed halogen. Depending on relative rates of the two steps, it may be difficult to stop at the first stage, and often, mixtures of the mono and bis hydrohalogenation products are obtained.

  8. Hammond's postulate - Wikipedia

    en.wikipedia.org/wiki/Hammond's_postulate

    The stabilities of the carbocations formed by this dissociation are known to follow the trend tertiary > secondary > primary > methyl. Therefore, since the tertiary carbocation is relatively stable and therefore close in energy to the R-X reactant, then the tertiary transition state will have a structure that is fairly similar to the R-X reactant.

  9. Pinacol rearrangement - Wikipedia

    en.wikipedia.org/wiki/Pinacol_rearrangement

    In cyclic systems, the reaction presents more features of interest. In these reactions, the stereochemistry of the diol plays a crucial role in deciding the major product. An alkyl group which is situated trans- to the leaving –OH group may migrate to the carbocation center, but cis- alkyl groups migrate at a very low rate.