Search results
Results from the WOW.Com Content Network
125.340006 has seven significant figures if the resolution is to 0.0001: 1, 2, 5, 3, 4, 0, and 0. Zeros to the left of the first non-zero digit (leading zeros) are not significant. If a length measurement gives 0.052 km, then 0.052 km = 52 m so 5 and 2 are only significant; the leading zeros appear or disappear, depending on which unit is used ...
ISBN 978-0-07-042807-2.. (NB. In particular see "Chapter 4: Artificial Neural Networks" (in particular pp. 96–97) where Mitchell uses the word "logistic function" and the "sigmoid function" synonymously – this function he also calls the "squashing function" – and the sigmoid (aka logistic) function is used to compress the outputs of the ...
In such a context, "simplifying" a number by removing trailing zeros would be incorrect. The number of trailing zeros in a non-zero base-b integer n equals the exponent of the highest power of b that divides n. For example, 14000 has three trailing zeros and is therefore divisible by 1000 = 10 3, but not by 10 4.
In the base −2 representation, a signed number is represented using a number system with base −2. In conventional binary number systems, the base, or radix, is 2; thus the rightmost bit represents 2 0, the next bit represents 2 1, the next bit 2 2, and so on. However, a binary number system with base −2 is also possible.
I think the example for logarithms in the Arithmetic section is wrong: 3.000 has 4 significant figures, and if the number of digits in the mantissa should be equal to the number of significant figures, then log(3.000×10^4)= 4.4771 (4 decimals), rather than 4.48 (2 decimals).
Typical volumes are 1, 2, 5, 10, 20, 25, 50 and 100 mL. Volumetric pipettes are commonly used in analytical chemistry to make laboratory solutions from a base stock as well as to prepare solutions for titration. ASTM standard E969 defines the standard tolerance for volumetric transfer pipettes. The tolerance depends on the size: a 0.5-mL ...
In numerical analysis, a root-finding algorithm is an algorithm for finding zeros, also called "roots", of continuous functions. A zero of a function f is a number x such that f(x) = 0. As, generally, the zeros of a function cannot be computed exactly nor expressed in closed form, root-finding
The decimal expansion of non-negative real number x will end in zeros (or in nines) if, and only if, x is a rational number whose denominator is of the form 2 n 5 m, where m and n are non-negative integers.