Search results
Results from the WOW.Com Content Network
The Eckhorn model provided a simple and effective tool for studying small mammal’s visual cortex, and was soon recognized as having significant application potential in image processing. In 1994, Johnson adapted the Eckhorn model to an image processing algorithm, calling this algorithm a pulse-coupled neural network.
The 2014 research paper on "Variational Recurrent Auto-Encoders" attempted to generate music based on songs from 8 different video games. This project is one of the few conducted purely on video game music. The neural network in the project was able to generate data that was very similar to the data of the games it trained off of. [35]
In 2008 a back-up with the source code of all Infocom's video games appeared from an anonymous Infocom source and was archived by the Internet Archive's Jason Scott. [264] [265] [266] On May 5, 2020, the Massachusetts Institute of Technology uploaded to GitHub the source code for 1977–1978 versions and 1977/1989 binaries of Zork. [267]
Game playing was an area of research in AI from its inception. One of the first examples of AI is the computerized game of Nim made in 1951 and published in 1952. Despite being advanced technology in the year it was made, 20 years before Pong, the game took the form of a relatively small box and was able to regularly win games even against highly skilled players of the game. [1]
A motion detection algorithm begins with the segmentation part where foreground or moving objects are segmented from the background. The simplest way to implement this is to take an image as background and take the frames obtained at the time t, denoted by I(t) to compare with the background image denoted by B.
Image segmentation strives to partition a digital image into regions of pixels with similar properties, e.g. homogeneity. [1] The higher-level region representation simplifies image analysis tasks such as counting objects or detecting changes, because region attributes (e.g. average intensity or shape [2]) can be compared more readily than raw pixels.
In digital image processing and computer vision, image segmentation is the process of partitioning a digital image into multiple image segments, also known as image regions or image objects (sets of pixels). The goal of segmentation is to simplify and/or change the representation of an image into something that is more meaningful and easier to ...
For example, the algorithm is not well-suited for segmentation of thin objects like blood vessels (see [13] for a proposed fix). Multiple labels: Graph cuts is only able to find a global optimum for binary labeling (i.e., two labels) problems, such as foreground/background image segmentation.