Search results
Results from the WOW.Com Content Network
Manganin is a trademarked name for an alloy of typically 84.2% copper, 12.1% manganese, and 3.7% nickel. It was first developed by Edward Weston in 1892, improving upon his Constantan (1887). Manganin foil and wire is used in the manufacture of resistors , particularly ammeter shunts , because of its virtually zero temperature coefficient of ...
Very importantly, constantan can be processed for self-temperature compensation to match a wide range of test material coefficients of thermal expansion.A-alloy is supplied in self-temperature-compensation (S-T-C) numbers 00, 03, 05, 06, 09, 13, 15, 18, 30, 40, and 50, for use on test materials with corresponding thermal expansion coefficients, expressed in parts per million by length (or μm ...
For manganin, a common shunt material, at 80 °C thermal drift begins to occur, at 120 °C thermal drift is a significant problem where error, depending on the design of the shunt, can be several percent and at 140 °C the manganin alloy becomes permanently damaged due to annealing resulting in the resistance value drifting up or down.
Electrical resistivity (also called volume resistivity or specific electrical resistance) is a fundamental specific property of a material that measures its electrical resistance or how strongly it resists electric current. A low resistivity indicates a material that readily allows electric current.
As quoted in an online version of: David R. Lide (ed), CRC Handbook of Chemistry and Physics, 84th Edition.CRC Press. Boca Raton, Florida, 2003; Section 4, Properties of the Elements and Inorganic Compounds; Physical Properties of the Rare Earth Metals
Nichrome, a non-magnetic 80/20 alloy of nickel and chromium, is the most common resistance wire for heating purposes because it has a high resistivity and resistance to oxidation at high temperatures, up to 1,400 °C (2,550 °F). When used as a heating element, resistance wire is usually wound into coils.
Copper alloys of manganese, such as Manganin, are commonly found in metal element shunt resistors used for measuring relatively large amounts of current. These alloys have very low temperature coefficient of resistance and are resistant to sulfur. This makes the alloys particularly useful in harsh automotive and industrial environments.
Wirewound resistors are commonly made by winding a metal wire, usually nichrome, around a ceramic, plastic, or fiberglass core. The ends of the wire are soldered or welded to two caps or rings, attached to the ends of the core. The assembly is protected with a layer of paint, molded plastic, or an enamel coating baked at high temperature.